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Abstract. In [CS01, Page 109] Grothendieck sketches the construction of a complex J∗(X)
or commutative pro-algebraic groups, associated to a smooth variety X, and for which each
Ji(X) is a product of local factors called the local generalized jacobians. The purpose of this
note is to recast this construction in the setting of higher algebraic group stacks for the fppf
topology. For this, we introduce a notion of algebraic homology associated to a scheme which
is a universal object computing fppf cohomology with coefficients in group schemes. We endow
this algebraic homology with a filtration by dimension of supports, and prove that, when X is
smooth, J∗(X) appears as the E1-page of the corresponding spectral sequence. In a final part
we partially extends our constructions and results over arbitrary bases.
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Introduction

The main purpose of this note is to introduce a notion of algebraic homology, associated
to schemes over a perfect field, which is a universal object controlling flat cohomology with
coefficients in certain commutative group schemes. The idea of algebraic homology is certainly
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not new, and was already sketched in a slight different setting in a letter of Grothendieck to
Serre (see letter from 8.9.1960 in [CS01, page 109]), as well as in [Gro] (cote 134-2 page 60) and
in [Mil76] for instance. However, in the present work we realize algebraic homology as a universal
(pro)object in the ∞-category of commutative groups in algebraic higher stacks, whereas in the
above references it is constructed as a complex of commutative pro-algebraic groups. The main
result of this work is a comparison statement for smooth schemes, and states that our notion
of algebraic homology recovers Grothendieck’s orginal construction. This comparison is not a
formal statement as it relates two objects living in two non-equivalent categories, and requires
to use an extra piece of data in the form of a filtration by dimension of supports. As filtered
objects, Grothendieck’s original construction is shown to appear as the 0-th truncation of
algebraic homology, for the Beilinson’s t-structure on filtered objects (see for instance [Pav23]).
This is a fancy manner to states that Grothendieck’s complex of pro-algebraic groups appears
as the E1-page of the spectral sequence associated to the filtration by dimension of supports
on algebraic homology. We also show that both objects can be used in order to compute fppf
cohomology with coefficients in commutative group schemes (with some affiness and unipotency
conditions for higher cohomology groups). This last statement is true by definition for algebraic
homology but requires a proof in the case of Grothendieck’s construction which is done by gluing
together the so-called local generalized jacobians appearing in our title.

We work over a perfect base field k, and we work in the ∞-topos of hypercomplete fppf
stacks Stk. In a first part of this work we introduce the notions of commutative algebraic
group stacks over k (see definition 1.2), which are the commutative group objects inside the
∞-category of Artin stacks locally of finite type over k and whose diagonal are quasi-compact
(in a strong sense). These are higher stacks analogues of locally algebraic groups over k, that is
separated commutative group schemes locally of finite type. The commutative algebraic group
stacks can also be characterized as connective complexes of sheaves of abelian groups E of
the big fppf site, whose cohomology sheaves H i(E) are all representable by locally algebraic
groups, and are moreover quasi-projective if i < 0. Among the commutative algebraic group
stacks we isolate the subclass of semi-unipotent objects. These are characterized by the further
conditions that H−1(E) is affine and that H i(E) is affine and unipotent when i < −1 (see
definition 2.1). This kind of conditions already appears under the name very presentable in the
context of non-abelian Hodge theory (see [Sim96]) and in the context of schematic homotopy
types (see [Toe06]). The algebraic homology of a scheme X over k (or any stack over k) can
then be defined as follows (see definition 3.1).

Definition 0.1. For a scheme X over k, its algebraic homology Hsu(X) is the pro-object in
semi-unipotent commutative algebraic group stacks which pro-represents the ∞-functor E 7→
Map(X,E).

The existence of the pro-object Hsu(X) in the definition above follows formally from the left
exactness of E 7→ Map(X,E). However, its existence already carries interesting cohomological
information. For instance, the universal morphism X → Hsu(X) can be seen to be a generaliza-
tion of the Albanese morphism of X which includes higher cohomological data in the picture.



GENERALIZED LOCAL JOCABIANS AND COMMUTATIVE GROUP STACKS 3

In a way, Hsu(X) could also be considered as a derived version of the classical Albanese variety
of X (see end of §2).

In order to express Hsu(X) in more explicit terms we introduce the standard filtration by
dimension of supports

0 → FdimXHsu(X) · · · → . . . FiHsu(X) → Fi−1Hsu(X) · · · → F0Hsu(X) = Hsu(X)

where FiHsu(X) is the part of the algebraic homology which is supported in codimension i in X.
The d-th graded piece of this filtration is given by the product of all local algebraic homologies
over all the points of codimension d in X (see proposition 3.2)

GrdHsu(X) ≃
∏

x∈X(dimX−d)

Hsu
x (X).

When X is furthermore smooth over k, purity implies that each graded piece GrdHsu(X) is
in fact (n − d)-connective (see corollary 3.5). In another word, the filtered object F∗Hsu(X)
is 0-connective with respect to Beilinson’s t-structure on filtered objects. As being connective,
we get a canonical projection of filtered objects

F∗Hsu(X) −→ H0
B(F∗Hsu(X))

where H0
B refers to the 0-th cohomology object for the Beilinson t-structure. This object is a

genuine complex made of commutative pro-algebraic groups, and as such can be compared to
Grothendieck’s original construction J∗(X). In the complex J∗(X), the degree d part is the
product of local generalized jacobian Jx(X) over all points x of codimension d in X which are
defined to pro-represent local cohomology in degree d (see definition 3.7).

Theorem 0.2. We have a natural isomorphism of complexes of pro-algebraic groups over k

H0
B(F∗Hsu(X)) ≃ J∗(X)1.

The theorem below, shows that J∗(X) appears as the 0-th truncation of F∗Hsu(X). The
natural projection F∗Hsu(X) → J∗(X) is not an equivalence in general, and it is thus surprising
that both objects compute the same cohomologies, as explained in the next result.

Theorem 0.3. Let i ≥ 0 and G a commutative algebraic group G, affine if i > 0 and unipotent
if i > 1. Then, the canonical projection F∗Hsu(X) → J∗(X) induces isomorphisms

Extinaive(J∗(X), G) ≃ H i
fppf (X,G).

In the theorem above the Extinaive refers to the Yoneda ext-groups computed inside the
derived category of complexes of commutative pro-algebraic groups. These ext-groups differ
from the ext-groups computed as fppf sheaves, and thus are not given by ext-groups computed
inside our category of commutative group stacks. We note that the theorem above is already
stated in [CS01, page 109] where the fppf topology is replaced with the Zariski topology.

1The statement is slightly wrong here as there is a small discrepancy in degree 0, which is a consequence of
some choices in the definitions. See corollary 3.8 for more details.
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All the results mentioned above are true over a perfect field k, and we do not know a way to
extend them over more general base schemes, at least in an interesting manner. However, when
restricted to unipotent coefficients, we propose a generalization of algebraic homology over any
base ring, based on our notion of affine stacks (see [Toe06]) and their abelian counter-parts
which we call affine homology types. We prove that any (small) stack X, in particular any
scheme, maps to a universal affine homology types called its affine homology and denoted by
Hu(X) (see proposition 4.6 and definition 4.8). Over a field, Hu(X) is the unipotent completion
of algebraic homology, and its advantage is that it makes sense over any base. Affine homology
comes equiped with a filtration by dimension of supports whose associated graded are given
by local affine homologies. Moreover, we prove that Hu(X) is completely characterized by the
complex H(X,Ga) considered as a dg-algebra over REnd(Ga), which we consider as a form of
Dieudonné theory for affine homology types.

To finish this introduction we would like to mention several related works. As we already
mentioned the notion of algebraic homology already appears in [CS01, page 109]), and and
[Mil76]. The results of the present work does not pretend to be very original and the main
point of this note was rather to recast these works in the more modern language of higher
stacks. The only exception is possibly our last section on affine homology, which we think can
be of independent interest.

In another direction, the results of this work have some limitations. First of all the fact that
we work over a base field is restrictive. Over more general bases, the 1-truncation of algebraic
homology essentially appears in the work of S. Brochard in [Bro21]. Extending the results
of [Bro21] seems however difficult because of the presence of complicated higher ext groups
between commutative group schemes which prevent to a perfect duality by mapping to Gm.
Also, the approach in [Bro21] is based on duality, which is an aspect we havent touched at all in
this note. Grothendieck already mentions duality in [Gro, 134-2], and in degree 0 this duality
of local generalized jacobians have been studied in [CC90]. Also, our comparison requires X
to be smooth. In his letter Grothendieck suggests an extension of the definition of J∗(X) to
the singular setting as well, but we could not reconstruct from it anything meaningful at the
moment. An extra limitations concern the unipotency conditions for higher homotopy groups
we have in the definition of algebraic homology. It is certainly a very interesting question to
drop this condition, for instance only assuming affiness, but that some of our results will not
remain correct in this more general setting (typically proposition 3.9).

Finally, there are also relations with algebraic homotopy types, as studies for instance in
[Toe06,KPT09,BV15,MR23]. Our notion of affine homology is the ablelian analogue of these,
and the two should be related by means of the Hurewitz morphism. As a final comment, affine
stacks are duals to cosimplicial commutative algebras, also called LSym-algebras. These are
Koszul dual to partition Lie algebras, thanks to [BM23], and therefore our notion of affine
homology should be closely related to abelian partition Lie algebras.
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1. Commutative algebraic group stacks

We work over a perfect base field k. We denote by Affk the category of affine k-schemes,
which will be endowed with the fppf topology. The ∞-category of (hypercomplete) stacks on
Affk is denoted by Stk. Similarly, dAffk denotes the ∞-category of derived affine k-schemes.

1.1. Reminders on abelian group schemes. We denote by AbSchk, the category of com-
mutative group schemes over k which are separated and of finite type over k (or equivalently
quasi-projective over k, see for instance [sta] lemma 39.8.2, tag 0BF6). The Yoneda embedding
provides a fully faithful functor

AbSchk ↪→ Abk,

from AbSchk to the category Abk of sheaves of abelian groups on Affk endowed with the fppf -
topology. It is well known that this full embedding commutes with the formations of kernels
and cokernels, and that its essential image of this full embedding is also stable by extensions.
We do not know a precise reference for this, so we include it as a lemma.

Lemma 1.1. The full sub-category of Abk formed by sheaves which are representable by com-
mutative separated group schemes of finite type over k, is stable by taking kernels, cokernels
and extensions.

Proof. The stability by kernels is obvious as the Yoneda embedding is left exact. For the sta-
bility by cokernels, the quotient fppf-sheaf G/H, for a monomorphism of commutative algebraic
groups H ↪→ G, is always representable by an Artin stack whose diagonal is a monomorphism,
that is by an algebraic space. This algebraic space is moreover quasi-separated (because H is
quasi-compact) and of finite type. We can thus use Artin’s theorem stating that a group object
in the category of quasi-separated algebraic spaces over a field is representable by a scheme
(see [Art69, Lem. 4.2]). Finally, if a sheaf of abelian groups is an extension of algebraic groups,
then it is, by descent, representable by a quasi-separated algebraic space, and we can conclude
using again Artin’s result. 2

The Barsotti-Chevalley decomposition theorem (see [Mil13]) states that any object G ∈
AbSchk fits in an exact sequence

0 → G0 → G→ A→ 0,

where G0 is affine and A is an abelian variety. Moreover, by [DG70, II-5 Cor. 2.3] G0 itself sits
in an exact sequence 0 → K → G0 → H → 0, where K is smooth and affine, and H is finite
infinitesimal (i.e. Kred = 0). We also recall from [DG70, IV-2 Porp. 2.5] that G ∈ AbSchk is
unipotent if it admits a finite filtration by sub-group schemes

· · · ⊂ Gi+1 ⊂ Gi · · · ⊂ G1 ⊂ G0 = G

such that each Gi/Gi+1 can be realized as a sub-group scheme the additive group Ga. We can
moreover arrange things so that each Gi/Gi+1 is a twisted form of Z/p or of αp. Unipotent
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group schemes are automatically affine, and form a full sub-category of AbSchk stable by
taking kernels, cokernels and extensions.

1.2. Commutative algebraic group stacks. We denote by AbStk the ∞-category obtained
from Stk by Z-linearization. It can be described explicitly as the ∞-category of ∞-functors

E : Affop
k → dgc

Z,

from affine k-schemes to connective complexes of abelian groups, satisfying the usual fppf
descent condition. Any object E ∈ Abk possesses an underlying derived stack |E| ∈ Stk
obtained by the Dold-Kan construction, explicitly defined by

|E|(S) := MapdgZ
(Z, E(S))

for any S ∈ Affk. This defines a forgetful ∞-functor Abk → dStk, which admits a left adjoint
sending F to Z ⊗ F . Recall that for E ∈ AbStk we denote by πi(E) the cohomology sheaves
H−i(E), which are also the homotopy sheaves πi(|E|) of the underlying stack |E| pointed at 0.

Definition 1.2. A commutative algebraic group stack is an object E ∈ AbStk such that
underlying stack |E| ∈ Stk is an Artin n-stack (for some n), locally of finite presentation and
strongly quasi-separated over k. They form, by definition, a full sub-∞-category

AbStalgk ⊂ AbStk.

Remind that strongly quasi-separated means that the diagonal map E → E × E is strongly
quasi-compact in the sense of [TV08]. This means that all the higher diagonal maps X → XSn

are quasi-compact for n ≥ 0. Equivalently, the inertia stack IE → E is required to be strongly
quasi-compact over E. As explained in [Toe05, Cor. 2.9] an Artin stack E locally of finite pre-
sentation which is strongly quasi-separated is such that for all field value point s ∈ E(K), all
its homotopy sheaves πi(E, s) are quasi-compact and quasi-separated algebraic spaces over K,
and thus are representable by group schemes thanks to [Art69, Lem. 4.2]. As we are working
over a field, the converse also holds.

Propositon 1.3. An object E ∈ AbStk is a commutative algebraic group stack if and only if
each homotopy sheaf πi(E) ∈ Abk is representable by a group scheme locally of finite type over
k, which is moreover quasi-projective for i > 0 and vanish for all but a finite number of indices
i.

Proof. Assume first that E is a commutative algebraic group stack. In the definition 1.2.
We have to prove that all the homotopy sheaves πi(E) are representable. We consider the
inertia stack IE of E. We already saw that πi(E) are group schemes for i > 0 by means
of [Toe05, Cor. 2.9], it remains to treat the case i = 0. As E is an abelian group object we have
splitting IE ≃ E×Ω0E, where Ω0E is the pointed loop stack at 0. As k is a field, we thus have
that IE → E is a fppf cover which is strongly quasi-compact. We can thus use [Toe05, Prop.
2.4], which remains valid only assuming the diagonal to be strongly quasi-compact, and deduce
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that E is a gerbe. In particular, π0(E) is representable by an algebraic space locally of finite
type over k. This is a group object in algebraic space, and is moreover quasi-separated by
assumptions on E, and by [Art69, Lem. 4.2] is representable by a group scheme locally of finite
type.

Conversely, assume that E satisfies the conditions of the proposition. We will prove by
induction on i that the i-th homotopical truncation τ≤iE is an Artin i-stack locally of finite
presentation and strongly quasi-separated over k. For i = 0 this is obvious, as π0(E) is a scheme
locally of finite type by assumption. Consider E≤i → E≤i−1, which fits into a cartesian square

E≤i
//

��

E≤i−1

��
0 // K(πi(E), i+ 1).

By assumption, πi(E) is a group scheme of finite type over k for i > 0, and thus K(πi(E), i+1)
is an Artin (i + 1)-stack locally of finite presentation and strongly quasi-separated k. By in-
duction, this implies that E≤i is an Artin i-stack locally of finite presentation and strongly
quasi-separated. 2

By using the long exact sequence in homotopy, we see that the proposition 1.3 easily implies
the following corollary.

Corollary 1.4. The full sub-∞-category AbStalgk ⊂ AbStk is a is stable by finite limits,
retracts and the homotopical truncation ∞-functors τ≤i.

Remark 1.5. We warn the reader that if E is a commutative algebraic group stack then BE is
in general not a commutative algebraic group stack anymore. It is so only if π0(E) is moreover
assumed to be of finite type.

We will also use occasionally the following bigger category.

Definition 1.6. A commutative locally algebraic group stack is an object E ∈ AbStk for all i
the sheaf πi(E) is representable by an algebraic space locally of finite type. The ∞-category of
commutative locally algebraic group stacks is denoted by AbStlalgk ⊂ AbStk.

As opposed to algebraic group stacks, the locally algebraic stacks are stable by suspension:
if E ∈ AbStlalgk , then BE, computed in AbStk, remains in AbStlalgk . More generally, AbStlalgk

is stable by finite limits and colimits, as this can be easily seen using the long exact sequence
in homotopy.

2. Algebraic homology

In this section we define algebraic homology. We will work with certain coefficients and
define algebraic homology accordingly. We start by the introduction of some extra conditions
on commutative algebraic groups stacks.
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Definition 2.1. Let E be a commutative algebraic group stack over k.
(1) We say that E is semi-affine if πi(E) is affine for i > 0.
(2) We say that E is semi-unipotent if E is semi-affine and πi(E) is unipotent for all i > 1.
(3) We say that E is unipotent if E is semi-unipotent and π0(E) is affine and unipotent.

We denote by AbStsuk ⊂ AbStk the full sub-∞-category consisting of semi-unipotent commu-
tative algebraic group stacks over k.

In the sequel below we will focus on semi-unipotent objects, and will study unipotent coeffi-
cients in a more general setting in our last section on affine homology. Note that semi-unipotent
commutative algebraic groups stacks are stable by finite limits and retracts taken in AbStk,
by considering the long exact sequence in homotopy.

We let X be any stack over k. We consider the ∞-functor

AbStsuk −→ Top

defined by E 7→ Map(X,E). This ∞-functor will be denoted by E 7→ H∗(X,E). By definition
it obviously commutes with finite limits, and thus is pro-representable by an object

Hsu(X) ∈ Pro(AbStsuk ).

Definition 2.2. With the notation above, the object Hsu(X) is called the (semi-unipotent)
algebraic homology of X (relative to k).

We will often drop the adjective semi-unipotent in the definition above and simply refer to
Hsu(X) as the algebraic homology of X. Note also that definition 2.2 makes sense for any stack
X over k, possibly non-representable by an Artin stack. However, we will mainly be interested
in the case where X is a scheme of finite type over k. Note also that algebraic homology is
a relative notion and depends on the base field k. It should therefore be noted by Hsu(X/k)
when mentioning the base field is important.

Remark 2.3. The notion above of algebraic homology is very close to that of flat homology
of [Mil76], but is different. A first difference is that these two objects live in two different, non-
equivalent, ∞-categories. Flat homology lives in the ∞-category of complexes of commutative
pro-algebraic groups. This has a canonical ∞-functor to AbStk, by considering the stack pro-
represented by a complex of pro-alegebraic groups, but this ∞-functor is known not to be fully
faithful. This is due to the existence of two different, non-isomorphic, definitions of ext-groups
of commutative algebraic groups: Yoneda ext-groups inside algebraic groups and ext-groups
of the corresponding fppf-sheaves. It is known that these two notions are different (see for
instance [Bre69]).

A second difference is the extra conditions of unipotency we use in definition algebraic
homology which is not made in [Mil76]. These kind of extra conditions already appears in a
different context as very presentable coefficients for the purpose of non-abelian Hodge theory,
see [Sim96]. Definition 2.2 remains valid without the semi-unipotent condition, however the
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comparison with Grothendieck’s original construction can only be made in the semi-unipotent
context. The general study of algebraic homology outside of the semi-unipotent context is thus
not considered in the present work (but is certainly interesting).

By definition the algebraic homology possesses the following basic properties.

Functoriality. The construction X 7→ Hsu(X) is functorial in X, and defines an ∞-functor
from Artin k-stack to pro-object in derived commutative algebraic groups. Moreover, the iden-
tity of Hsu(X) defines a canonical class αX ∈ H0(X,Hsu(X)), and thus a canonical morphism
of pro-stacks

αX : X → Hsu(X),

which is functorial in X as well.
Similarly, the canonical element αu

X ∈ H0(X,Hu(X)), corresponding to the identity of Hu(X),
induces an natural morphism Hsu(X) → Hu(X) which is functorial in X. This morphism must
be understood as the universal pro-unipotent quotient.

Homology of the point. We write Hsu(k) for Hsu(Spec k). It is easy to see that Hsu(k) ≃ Z
is the constant fppf sheaf Z.

Homology groups. The pro-object Hsu(X) possesses pro-homology groups Hsu
i (X) :=

πi(Hsu(X)), which are commutative pro-algebraic groups over k. By definition of semi-unipotent
these pro-algebraic groups are linear (or affine) for i > 0 and unipotent for i > 1. These are
covariantly associated to X and are called the algebraic homology groups.

In general, the projectionX → Spec k provides a canonical morphism Hsu(X) → Hsu(Spec k) ≃
Z. We thus have a canonical fibration sequence of commutative algebraic group stacks

Hsu(X)(0) → Hsu(X) → Hsu(k) ≃ Z,
where Hsu(X)(0) is by definition the reduced algebraic homology of X. In general the fibration
sequence above does not split (see below), and a choice of a rational point x ∈ X(k) provides a
canonical splitting Hsu(X) ≃ Z⊕Hsu(X)(0) and corresponding splitting on homology groups.

Relation to the Albanese variety. The pro-algebraic group Hsu
0 (X) is directly related to

the Albanese variety of X. Indeed, for any commutative algebraic group G, we have a canonical
bijection

H0(X,G) = Hom(X,G) ≃ H0(X,G) ≃ Hom(Hsu
0 (X), G).

Fixing a point x ∈ X(k), we get a decomposition Hsu
0 (X) ≃ Hsu

0 (X)(0) ⊕ Z,. When X has no
k-point, the projection X → Spec k provides a (a priory non-split) short exact sequence

0 → Hsu
0 (X)(0) → Hsu

0 (X) → Z → 0.

We can consider the universal morphism X → Hsu(X), and check that the composite morphism
X → Hsu

0 (X) → Z is the constant function 1 on X. It thus factors through a canonical
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morphism
albX : X → Hsu

0 (X)(1)

where Hsu
0 (X)(1) is the fiber at 1 of the short exact sequence above, considered naturally as

a torsor over the group Hsu
0 (X)(0). This morphism is a generalization of the usual Albanese

morphism to the Albanese variety. When X is smooth and proper, Hsu
0 (X)(1) can be identified

with the usual Albanese variety, and albX with the usual the Albanese map.
In general, the universal morphism X → Hsu(X), composed with the projection Hsu(X) → Z

is the constant map X → Z equals to 1. Therefore, we have a canonical morphism X →
Hsu(X)(1) where Hsu(X)(1) is the fiber at 1 of Hsu(X) → Z. This morphism is a higher coho-
mological generalization of the Albanese morphism as being the universal map towards a torsor
over an object in Pro(AbStsuk ).

Relation to the Albanese stack. When X is an Artin stack of finite type over X, the first
Postnikov truncation Hsu

≤1(X) is an abelian group object in algebraic pro-Artin 1-stacks. This
object is closely related D(Pic(X)), the dual of the Picard stack of X (relative to k) studied
in [Bro21]. Indeed, Pic(X) := Map(X,BGm) is the internal Hom stack from X to BGm,
and we thus have a canonical evaluation morphism ev : X × Pic(X) → BGm which defines a
canonical morphism

X → Map(Pic(X), BGm) = D(Pic(X)).

When X is proper and the dual D(Pic(X)) is known to be a representable group stack, it is
semi-unipotent. Indeed, we know that π1(D(Pic(X))) is an affine group scheme over k, and
thus pro-algebraic and affine. Moreover, Pic(X) is a commutative algebraic group stack and
sits in an exact sequence 0 → BGm → Pic(X) → π0(Pic(X)) → 0. Therefore, by duality we
get a fibration sequence of commutative group stacks

0 → D(π0(Pic(X))) → D(Pic(X)) → Z → 0.

The choice of a global point x ∈ X(k) defines a splitting of this sequence, and thus the evaluation
map X → D(Pic(X)) can be composed to a morphism X → D(H0(Pic(X)). By the universal
property of algebraic homology we get a canonical morphism of pro-objects in commutative
algebraic 1-stacks

Hsu
≤1(X)(0) → D(H0(Pic(X))).

In absence of global points we get a morphism Hsu
≤1(X)(1) → D(H0(Pic(X))) where Hsu

≤1(X)(1)

is the fiber at 1 of the canonical fibration sequence

Hsu
≤1(X)(0) → Hsu

≤1(X) → Hsu
≤1(Spec k)

as described above. This map is an isomorphism when X satisfies some extra conditions
expressed in [Bro21], as both objects Hsu

≤1(X)(1) and D(H0(Pic(X))) then satisfy the same
universal property. This provides a direct relation between algebraic homology and the Albanese
morphism constructed in [Bro21].
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3. Grothendieck’s generalized local jacobians

In this section we provide Hsu(X) with a natural filtration, induced by the standard filtra-
tion by codimension on cohomology. This filtration will provide a description of Hsu(X) in
local terms. When working with smooth schemes over k, the local factors will directly related
to Grothendieck’s orginial construction of local generalized jacobians from his letter to Serre
(letter from 9.8.1960, [CS01] page 109).

In this section X is a scheme of finite type over k. We denote by X(d) the subset of X
consisting of all points of dimension d in X. Similarly, X(≥d) will be the subset of points of
dimension at least equal to d.

3.1. The filtration by dimension. We let d ≥ 0 be an integer, and consider Opd(X) the
poset of opens U ⊂ X containing X(≥d). An open U belongs to Opd(X) if and only if the
closed complement U−Z has dimension at most d−1. The only element in Op0(X) is X itself,
whereas ∅ ∈ OpdimX+1(X), and obviously Opd(X) ⊂ Opd+1(X). We define FdHsu(X) to be

FdHsu(X) := lim
U∈Opd(X)

Hsu(U)

where the limit is taken over the poset Opd(X) and inside the ∞-category Pro(AbStsuk ) of pro-
objects in semi-unipotent commutative algebraic group stacks. Note that F0Hsu(X) ≃ Hsu(X),
and as ∅ is initial in OpdimX+1(X) we have FdimX+1Hsu(X) ≃ 0.

The object FdHsu(X) comes equipped with a canonical morphism Fd+1Hsu(X) → FdHsu(X),
induced from the inclusion of posets Opd(X) → Opd+1(X), and we thus obtain this way a
filtration
0 = FdimX+1Hsu(X) = Hsu(X) → · · · → FdHsu(X) → Fd−1Hsu(X) → · · · → F0Hsu(X) = Hsu(X).

Definition 3.1. The above filtration is called the filtration by dimension on Hsu(X).
The d-th graded piece GrdHsu(X) are defined as the cofiber of Fd+1Hsu(X) → FdHsu(X),

computed in the stable ∞-category Pro(AbStk) (see comment 3.3) which is dual to local coho-
mology in dimension d on X. More precisely, we have the following universal characterization
of GrdHsu(X).
Propositon 3.2. With the notation above, and for any semi-unipotent commutative algebraic
group stack G, there exists a canonical equivalence, functorial in G

Map(GrdHsu(X), G) ≃
⊕

x∈X(d)

H∗
x(X,G),

where the sum runs over the set X(d) consisting of all points of X of dimension d, and where
H∗

x(X,G) is local cohomology defined as the fiber of H∗(Xx, G) → H∗(Xx − {x}, G) with Xx =
SpecOX,x. Equivalently, we have a canonical identification

GrdHsu(X) ≃
∏

x∈X(d)

Hsu
∗,x(Xx)
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where Hsu
∗,x(Xx) is local homology at x, defined as the cofiber of the natural morphism Hsu

∗ (Xx−
{x}) → Hsu

∗ (Xx).

Proof. For any inclusion of open V ⊂ U , with U ∈ Opd(X) and V ∈ Opd+1(X), the closed
complement U − V only has a finite number of points of dimension d. Indeed, if (U − V )(d) is
infinite, then U − V must be of dimension at least d + 1 and thus must contain at least one
point of dimension d+ 1, which contradicts V ∈ Opd+1(X). Note also that for x ∈ (U − V )(d),
we have Xx ∩ V = Xx − {x}, as x is the only point of Xx of dimension d in X. We thus get
this way a commutative square of schemes∐

x∈(U−V )(d) Xx − {x}

��

// V

��∐
x∈(U−V )(d) Xx

// U,

and thus an induced commutative square on the vertical cofibers on algebraic homologies∏
x∈(U−V )(d)

Hsu
∗,x(Xx) −→ Hsu(U)/Hsu(V ).

By passing to the limit over the pairs V ⊂ U with U ∈ Opd(X) and V ∈ Opd+1(X) we find the
required morphism

ϕ :
∏

x∈X(d)

Hsu
∗,x(Xx) −→ lim

V⊂U
Hsu(U)/Hsu(V ) = GrdHsu(X).

It remains to prove that this morphism ϕ is an equivalence. For this, by functoriality in X,
we localize the construction on the small Zariski site of X. Both constructions

U 7→
∏

x∈U(d)

Hsu
∗,x(Ux) U 7→ GrdHsu(U)

are costacks, with values in Pro(AbStk), on XZar. It is therefore enough to check that the
above morphism induces an equivalence on the fibers at a given point x ∈ X. This fiber is
clearly 0 if x is not of codimension d. If x is of codimension d the fiber of the right hand side
is equivalent to

lim
x∈U∈Opd(X)

Hsu(U)/Hsu(U − {x}).

The fiber at x of the left hand side is clearly Hsu
∗,x(Xx). We are thus reduced to show that for

any semi-unipotent commutative algebraic group stack G ∈ AbStsuk , the canonical morphisms

co lim
x∈U

H∗(U,G) → H∗(Xx, G) co lim
x∈U

H∗(U − Zx, G) → H∗(Xx − {x}, G)

are equivalences. But this is true because G is an Artin stack of finite presentation, and thus
its functor of points sends filtered colimits of commutative rings to filtered colimits. 2
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Remark 3.3. The semi-unipotent commutative algebraic group stacks are not stable by cofibers.
So in generalGrdHsu(X) are no longer (pro)semi-unipotent, and are merely belongs to Pro(AbStlalgk ),
the ∞-category of pro-objects in commutative locally algebraic groups stacks. It is however
in general not too far from being semi-unipotent, and the problem arise mainly in low ho-
motopical degrees. The pro-sheaves πi(GrdHsu(X)) are always pro objects in commutative
groups algebraic spaces for all i. When i > 0, these pro-algebraic spaces are moreover pro-
group schemes, and for i > 2 these pro-group schemes are always pro-unipotent. The group
π1(GrdHsu(X)) might have some abelian and infinite discrete parts, and π2(GrdHsu(X)) might
have non-unipotent affine parts. However, under regularity assumptions on X most of these
graded pieces are in fact semi-unipotent as shown in the result below.

As the object GrdHsu(X) are pro-objects in AbStlalgk , their homotopy sheaves are pro-sheaves
of abelian groups. In the comment above, as well as the results below we will simply say that
Grd(Hsu(X)) is connected and semi-unipotent, to signify that the pro-sheaf π0(GrdHsu(X)) van-
ishes, that π1Grd(Hsu(X)) is representable by a pro-affine algebraic group, and that π2(GrdHsu(X))
is representable by a pro-unipotent algebraic group.

Propositon 3.4. Assume that X smooth and geometrically connected of dimension n. Then,
for all d ̸= n−1 the (pro) commutative algebraic group stack GrdHsu(X) is connected and (pro)
semi-unipotent. Moreover, π1(Grn−1Hsu(X)) is a (pro) affine algebraic group.

Proof. Wen d = n there is nothing to prove, as GrnHsu(X) = FnHsu(X) is semi-unipotent
by construction. We thus fix d < n, and for simplicity, we will denote by πi the pro-algebraic
group πi(GrdHsu(X)).

Being defined as a cofiber of a morphism between semi-unipotent commutative algebraic
group stacks, it is easy to see from the long exact sequence in homotopy that πi is unipotent
for i > 2, and affine for i = 2. It remains to prove furthermore that π0 vanishes, π2 is unipotent
when d ̸= n− 1, and that π1 is always affine.

We first check that GrdHsu(X) is connected. Indeed, for x ∈ X(d) and for any commutative
group scheme G locally of finite type over k the restriction map G(Xx − {x}) → G(Xx) is
injective (because Xx−{x} is Zariski dense in Xx as d < n). This shows that the morphism on
algebraic homology induced by the inclusion of schemesXx−{x} ↪→ Xx induces an epimorphism
Hsu

0 (Xx−{x}) ↠ Hsu
0 (Xx). As a result π0 ≃ 0, proposition 3.2 implies that GrdHsu(X) is indeed

connected.
We can argue similarly in order to prove that π1 is always pro affine. Indeed, we consider

again the morphism u : Hsu
0 (Xx − {x}) ↠ Hsu

0 (Xx) of pro algebraic groups over k. For any
étale commutative group scheme G (possibly infinite), we have G(Xx −{x}) ≃ G(Xx) because
X is geometrically connected. This shows that the morphism u induces an isomorphism on the
groups of connected components. Similarly, for any abelian variety A, as X is regular, Weil
extension theorem implies that A(Xx) ≃ A(Xx − {x}). This in turn implies that u induces
also an isomorphism on the maximal quotients which are abelian varieties. By the Barasotti-
Chevalley decomposition theorem we see that this implies that the kernel of umust be contained
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in the maximal pro affine sub-group of Hsu
0 (Xx − {x}) and thus must itself be pro affine. As

a result, the long exact sequence in homotopy implies that π1 is indeed a pro affine algebraic
group.

Finally, we now assume that d < n−1. We already know that GrdHsu(X) is connected. The
assumption of the proposition insures that we have moreover π1 = 0. Indeed, as X is regular,
its local H1 with coefficients in affine algebraic groups vanish. Moreover, for any commutative
affine algebraic group G we have Hom(π1, G) ≃ H1

x(X,G) = 0. As π1 is already known to
be affine, we deduce that π1 = 0. To finish the proof, let u : π2 → Gm be a multiplicative
character. As π0 = π1 = 0 the morphism u can be considered as a morphism of commutative
algebraic groups stacks

u : GrdHsu(X) → Gm[2],

and thus as an element in H2
x(X,Gm), which vanishes by assumptions. The group π2 thus does

not possesses any non-trivial multiplicative character and is therefore unipotent as required. 2

The proposition 3.2 is important when combined with purity.

Corollary 3.5. Let X be a connected and smooth k-scheme of dimension n. Then, for all
integer d the object GrdHsu(X) is (n− d)-connective: its pro-homotopy groups πi(GrdHsu(X))
vanish for i < n− d.

Proof of corollary. When d = n there is nothing to prove. For d = n − 1 this is already in
our proposition 3.2. Let us assume that d < n − 1, and therefore GrdHsu(X) is known to be
semi-unipotent. To prove the corollary, we thus have to prove that any G ∈ AbStsuk which is
(n−d−1)-truncated, then MapAbStk

(GrdHsu(X), G) ≃ ∗. By proposition 3.2 this is equivalent
to say that H∗

x(X,G) ≃ 0 for all point x ∈ X of dimension d. We then proceed by Postnikov
decomposition on G, and we thus reduce the corollary to the following three statements.

(1) For n − d > 2, x ∈ X(d) and 2 ≤ i < n − d, and all commutative unipotent algebraic
group G the local cohomology at x with coefficients in G vanishes: H i

x(X,G) = 0.
(2) For n− d > 1, and all x ∈ X(d), and all commutative linear algebraic group G we have

H1
x(X,G) = 0.

(3) For n − d > 0, and all x ∈ X(d), and all commutative algebraic group G we have
H0

x(X,G) = 0.
The condition (3) is obvious, as by density the natural morphism G(X − {x}) → G(X) is

injective. Condition (2) is true by Hartogs: any G-bundle on X − {x} extends to a G-bundle
on the whole X. It can also be checked easily by embedding G in a smooth commutative affine
algebraic group and reducing the condition to the two cases G = Ga and G = Gm. Finally, con-
dition (1) can be proved the same manner. By embeddingG in a smooth unipotent commutative
algebraic group G′ we can assume that G is itself smooth. When G is smooth it is a successive
extensions of additive groups Ga and thus we are reduced to the case G = Ga. In this last case
the condition follows from the usual purity property for coherent sheaves on regular schemes. 2
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Remark 3.6. Even when X is smooth over k, we do not know if Grn−1Hsu(X) is semi-
unipotent. We have proven that it is connected with affine π1, but the fact that its π2 is
pro-unipotent does not seem clear to us. Answering this question would require some knowl-
edge of the first two homotopy groups π1 and π2, as well as their Postnikov extension class
Ext2(π1, π2). The author does not claim to fully understand the situation.

3.2. Grothendieck’s construction. We will now compare the general notion of alegbraic
homology with the construction sketched by Grothendieck in [CS01, Page 109] (which also
appears in a letter to L. Breen, see [Gro, cote 134-2] page 60). As we are working with the
fppf topology, we will have to modify slightly the presentation that was originally done by
Grothendieck in the context of the Zariski topology. For this, and all along this section, we will
assume that X is a smooth scheme, connected and of dimension n over k. Let x ∈ X(d) be a
point of dimension d on X.

Let us first consider the case where n − d > 1. We consider the functor G 7→ Hn−d
x (Xx, G),

of local cohomology at x, defined on the category of abelian and unipotent algebraic groups
over k. By purity, we have Hn−d−1

x (Xx, G) ≃ 0 and thus the above functor is left exact in
G. It is therefore pro-representable by a commutative pro-unipotent abelian algebraic group
Jx(X). Similarly, when n−d = 1, we consider the functor G 7→ H1

x(Xx, G), now defined on the
category of abelian affine algebraic groups. It is again left exact and thus pro-representable by
Jx(X). Finally, for n = d, we consider functor G 7→ G(K), where K = Frac(X) is the fraction
field of X, but now defined on the whole category of all abelian group schemes locally of finite
type over k. It is left exact and thus pro-representable by a pro object Jx(X).

For an integer d we then set

Jm(X) :=
∏

x∈X(n−m)

Jx(X)

which is a pro object in the category of commutative group schemes locally of finite type over
k. It is moreover pro-affine if m = 1 and pro-unipotent if m > 1. We denote by J∗(X) the
graded object ⊕mJm(X). It comes equipped with a homological differential Jm(X) → Jm−1(X)
defined as follows. For a fixed z ∈ X(n−m+1), we define a morphism

dz :
∏

x∈X(n−m)

Jx(X) → Jz(X)

by defining a natural transformation on the functor they pro-represent. We start by the case
where m > 2, so that these functors are both defined on the category of unipotent commutative
algebraic groups. The right hand side pro-represents the functor G 7→ Hm−1

z (Xz, G), whereas
the left hand side pro-represents the functor G 7→ ⊕x∈X(n−m)Hm

x (Xx, G). In order to define dz
we thus have to construct a morphism on local cohomologies

Hm−1
z (Xz, G) −→ ⊕x∈X(n−m)Hm

x (Xx, G),

functorial in G. This morphism is the usual differential in the Cousin complex (see [CTHK97,
§1]). Any element α ∈ Hm−1

z (Xz, G) comes from an element αU ∈ Hm−1
Z (U,G) for an open
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U ⊂ X containing z, and where Z is the closure of z in U . We denote by x1, . . . , xq the points
of X of dimension n − m which are specializations of z but not belonging to U , and we let
T = X − U . We consider the boundary map Hm−1(U,G) → Hm−1

T (X,G), together with the
restriction morphism Hm

T (X,G) → Hm
x (Xx, G) along the inclusion of pairs (Xx, {x}) ⊂ (X,T ).

We get this way a composed morphism

Hm−1
Z (U,G) → Hm−1(U,G) → Hm

T (X,G) →
⊕
1≤i≤q

Hm
xi
(Xxi

, G).

The image of αU by the morphism is by definition dz(α). It is well known that this morphism
is independant of the choice of αU and squares to zero.

It remains to understand the cases in low degrees where m = 2 or m = 1, for which mild
modifications are required. Notice first that the differential defined on local cohomologies
Hm−1

z (Xz, G) −→ ⊕x∈X(n−m)Hm
x (Xx, G) makes perfect sense for any sheaf of abelian groups G,

the unipotence or affiness conditions onG, or even representability, not being necessary. Assume
first that m = 2, z ∈ X(n−1) is a point of codimension 1 and x ∈ X(n−2) is a specialization
of z of codimension 2. The pro-algebraic group Jz(X) is an affine commutative group scheme
over k, whereas Jx(X) is defined to corepresent the functor G 7→ H2

x(X,G) on the category
of unipotent group schemes G only. The important fact here is that Jx(X) also corepresents
the functor G 7→ H2

x(X,G) defined on all affine group schemes G. Indeed, let us denote by
J ′
x(X) the pro-algebraic group representing G 7→ H2

x(X,G) for G running in the category
of affine algebraic groups over k. The existence of J ′

x(X) is again guaranteed by the fact
that the functor considered is left exact: as X is smooth, H1

x(X,G) ≃ 0 for any x ∈ X(n−2)

and any affine group scheme G. By the universal properties of Jx(X) and J ′
x(X) we have

a natural projection J ′
x(X) → Jx(X), making Jx(X) into the maximal unipotent quotient

of J ′
x(X). We claim that this projection is an isomorphism. For this, we split J ′

x(X) as
a direct sum of a unipotent and a diagonalisable part (see [DG70, IV-3 Thm. 1.1.]), and
we see that we only need to prove that the diagonalisable part is trivial. This, in turn, is
equivalent to the fact that there are no non-trivial maps J ′

x(X) → Gm, or equivalently that
H2

x(X,Gm) = 0. This last assertion is true because X is smooth and x is of codimension 2,
therefor its local Brauer group at x vanishes (H1(Xx,Gm) → H1(Xx − {x}) is surjective by
Hartogs and H2(Xx,Gm) → H2(Xx − {x}) is injective, see [Gro68, Cor. 1.10]). We thus now
that Jx(X) corepresents the functor G 7→ H2

x(X,G) on all affine group scheme G, and thus the
differential Jz(X) → Jx(X) can be defined by duality using the above mentioned differential
on local cohomologies H1

z (Xz, G) −→ H2
x(Xx, G).

Finally, for m = 1 the argument is similar to the case m = 2. We let z ∈ X(n) be the generic
point of X and denote by x ∈ X(n−1) a point of codimension 1. We introduce as before J ′

x(X),
the pro-algebraic group corepresenting the functor G 7→ H1

x(X,G) without any conditions on G
now. We have to prove as before that the natural projection J ′

x(X) → Jx(X) is an isomorphism.
As this projection identifies Jx(X) with the maximal affine quotient of J ′

x(X), it is enough to
show that J ′

x(X) is itself affine. By the Barsotti-Chevalley decomposition theorem this is
equivalent to prove that for any abelian variety A we have Hom(J ′

x(X), A) ≃ H1
x(X,A) ≃ 0.
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But again, X being smooth implies that H1
x(X,A) ≃ 0 for all abelian variety A. We can then

extend the differential also to J1(X) → J0(X), and we are thus finished with the definition of the
complex J∗(X). We gather this in the definition below, which is originally due to Grothendieck.

Definition 3.7 (Grothendieck). Let X be a smooth and connected k-scheme of dimension n
as above.

(1) The pro-algebraic group Jd(X) =
∏

x∈X(n−i) Jx(X) is called Grothendieck’s local gener-
alized jacobian of X at x.

(2) The complex of local jacobians, with the differentials define above, will be denoted by

J∗(X) := Jn(X) → Jn−1(X) → · · · → J1(X) → J0(X) .

As a first relation between the complex J∗(X) and algebraic homology, we have the following
direct observation, which is a direct consequence of corollary 3.5, proposition 3.4 and and the
definitions of J∗(X).

Corollary 3.8. Let X be a smooth k-scheme of dimension n. Then, the 0-th truncation of the
graded pieces of Hsu(X) are the Grothendieck’s local generalized jacobians

π0(Grn−dHsu(X)) ≃ Jd(X),

as soon as d < n. The canonical morphism GrnHsu(X) → J0(X) is such that for any commu-
tative group scheme of finite type G we have

Hom(J0(X), G) ≃ Hom(GrnHsu(X), G).

In the previous corollary there is a slight discrepancy in degree 0, as π0(GrnHsu(X)) is allowed
to have an infinite discrete part, as opposed to J0(X). However, these two pro-objects, even
though different, share the same morphisms towards any commutative group scheme of finite
typ (so J0(X) is some sort of pro-completion of finite type of GrnHsu(X)).

The above result can be made more precise. Indeed, the filtration by dimension on Hsu(X)
induces a spectral sequence

πp(GrqHsu(X)) ⇒ πp+q(Hsu(X)),

and under the identification of the corollary the differential in the complex J∗(X) corresponds
to the differential on the E1-term of the spectral sequence. Therefore, by the purity 3.5,
Grothendieck’s local generalized jacobian Jd(X) appear as the lowest non-trivial homotopy
group of Gr(n−d)Hsu(X). However, the graded pieces Gr(n−d)Hsu(X) are not concentrated in
a single degree, and in general Gr(n−d)Hsu(X) and Jd(X) differs (this is due to the use of the
fppf topology here). We will now see however that the complex J∗(X) is essentially enough to
recover the cohomology of X with coefficients in a single commutative algebraic group, affine
and unipotent when necessary, as stated in [CS01, Page 109].

The corollary 3.8 can also be phrased by stating that the complex of pro-algebraic groups
J∗(X) is the 0-truncation of the filtered object Hsu(X) with respect to the Beilinson’s t-structure



18 BERTRAND TOËN

on filtered objects. As a result, we do have a canonical projection of filtered objects

q : Hsu(X) → J∗(X)

where the filtration on the right hand side is the naive filtration J∗≤n−d(X) ⊂ J∗(X). This
projection is not an equivalence, as the graded pieces GrdHsu(X) are not purely concentrated
in a single degree in general. However, the projection q induces an isomorphisms on certain
ext groups showing that the complex J∗(X) can be used in order to compute the individual
cohomology groups H i

fppf (X,G) with coefficient in a commutative algebraic group G (affine if
i > 0, and unipotent if i > 1). In order to explain this, we need to first introduce a comparison
functor, between the naive derived category of commutative group schemes and our category
of commutative derived group stacks.

We know that the category AbSchk, of separated commutative group schemes of finite
type over k is an abelian category. Its category of pro-objects Pro(AbSchk) is known to be
abelian and to possess enough projective objects (see [Mil70]). As such it possesses a bounded
derived category Db(Pro(AbSchk)), obtained by localizing the category of bounded complexes
in Pro(AbSchk) with respect to the quasi-isomorphisms. Because the functor sending G ∈
Pro(AbSchk) to the fppf-sheaf it represents is exact, there is a canonical ∞-functor

h : Db(Pro(AbSchk)) −→ AbStk,

It is well known that this functor is not fully faithful in general, as this can be seen on higher
ext-groups. The ext-groups defined in Db(Pro(AbSchk)) are the naive extension groups of
commutative pro-algebraic groups, and can be described in terms of Yoneda extensions. On the
other side, the extensions groups in AbStk are the ext-groups of sheaves. It is know that, when
k is algebraically closed, Exti vanish when i > 2 and when computed in Db(Pro(AbSchk))
(see [Mil70]), but this is not the case in AbStk (see [Bre69]).

Using the projection q and the ∞-functor h, we get for any commutative group scheme G of
finite type over k, and any integer i a natural morphism of groups

ϕi
G : [J∗(X), G[i]]Db(Pro(AbSchk)) −→ [h(J∗(X)), h(G)[i]] −→ [Hsu(X), h(G)[i]].

If we assume moreover that G is affine if i > 0, and moreover unipotent if i > 1, the right hand
side can be identified with H i

fppf (X,G) by definition of algebraic homology. We thus get under
this restriction a natural morphism

ϕi
G : [J∗(X), G[i]]Db(Pro(AbSchk)) → H i

fppf (X,G).

For simplicity we denote by Extinaive(J∗(X), G) the left hand side of the above morphism.

Propositon 3.9. For all i ≥ 0 and all commutative group scheme G which is affine if i > 0
and unipotent if i > 1, the morphism

ϕi
G : Extinaive(J∗(X), G) → H i

fppf (X,G)

is an isomorphism.
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Proof. We start by using that the projection q : Hsu(X) → J∗(X) is compatible with
filtrations on both sides: the filtration by dimension on Hsu(X) and the naive filtration on
J∗(X). These filtrations induce convergent spectral sequences

[Grn−qHsu(X), G[p]] ⇒ Hp+q
fppf (X,G) Extpnaive(Jq(X), G) ⇒ Extp+q

naive(J∗(X), G).

The morphism ϕG of the proposition is then compatible with these spectral sequences, and we
are thus reduced to show that, for fixed p and q, the induced morphism

Extpnaive(Jq(X), G) → [Grn−qHsu(X), G[p]]

is an isomorphism. By proposition 3.2, the right hand side can be identified with local coho-
mology

∐
x∈X(n−q) Hp

x(X,G). We also note that by construction Jq(X) =
∏

x∈X(n−q) Jx(X), and
thus we are reduced to show that for a given point x ∈ X, of codimension d, and all i ≥ 0, the
natural morphism

ψi
G : Extinaive(Jx(X), G) → Hd+i

x (X,G),

under the extra condition stated in the proposition: G is affine if d + i > 0 and unipotent if
d + i > 1. Recall here that Jx(X) corepresents the functor G 7→ Hd

x(X,G), where d is the
codimension of x in X.

We first deal with the two special cases i + d = 0 and i + d = 1. When i + d = 0, and
thus i = d = 0, we have Ext0(Jx(X), G) = Hom(Jx(X), G) ≃ Hd

x(X,G) and it is then obvious
that ψ0

G is bijective. Suppose now that d + i = 1, and thus G is assumed to be affine. If x is
of codimension 1, we have i = 0, and again ψ0

G is bijective by definition of Jx(X). If x is of
codimension 0 and i = 1, we have to prove that the natural morphism

Ext1naive(J0(X), G) → H1
fppf (K(X), G),

where K(X) is the fraction field of X. To show this we start by the following lemma treating
the case of G = Ga and G = Gm.

Lemma 3.10. With the notation above we have

ψ1
G : Ext1naive(J0(X),Ga) ≃ Ext1naive(J0(X),Gm) ≃ 0.

Proof of the lemma. Suppose that we are given an extension of commutative pro-algebraic
groups 0 // Ga

// H // J0(X) // 0. By the universal property of J0(X), construc-
tion a section J0(X) → H is equivalent to give a point s ∈ H(K(X)), which projects to the uni-
versal element in J0(X)(K(X)). But we have an exact sequence in fppf cohomology of K(X)
H(K(X)) → J0(X)(K(X)) → H1

fppf (K(X),Ga) = 0, showing that H(K(X)) → J0(X)(K(X))

is surjective. Therefore the short exact sequence splits showing that Ext1naive(J0(X),Ga) = 0.
The proof for Gm is similar. 2

For a general commutative affine group scheme G over k, we can decompose G as a direct
sum Gu⊕Gm, of a unipotent part and a multiplicative part. We can moreover use compositions
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series on each components Gu and Gm to reduce to the case where G is either Ga or Gm, or a
subgroup of Ga or Gm with short exact sequences

0 → G→ Gm → Gm → 0 0 → G→ Ga → Ga → 0.

We then consider the action of ψ1
G on the associated long exact sequences, and lemma 3.10

shows that indeed ψ1
G is bijective for any G.

We now turn to the case where i+d > 1 and G is unipotent, which is proven in a very similar
fashion than the case i = 1 and d = 0. To begin with, we prove that ψi

G is an isomorphism
for G = Ga. Indeed, when i = 0 this is obvious by the definition of Jx(X). For i > 0 the
domain and codomain of ψi

Ga
vanishes. Indeed, Hd+i

x (X,Ga) ≃ Hd+i
x (X,O) ≃ 0 for i > 0 by

local duality for coherent sheaves. On the other hand, Extinaive(Jx(X),Ga) = 0 by the following
lemma.

Lemma 3.11. With the notation above and for all i > 0

ψi
Ga

: Extinaive(Jx(X),Ga) ≃ 0.

Proof of the lemma. Suppose that we are given an extension of commutative pro-algebraic
groups 0 // Ga

// H // Jx(X) // 0. By the universal property of J0(X), construc-
tion a section J0(X) → H is equivalent to give an element s ∈ Hd

x(X,H), which projects
to the universal element in Hd

x(X, Jx(X)). But we have an exact sequence in fppf coho-
mology of X local at x Hd

x(X,H) → Hd
x(X, Jx(X)) → Hd+1

x (X,Ga) = 0, showing that
Hd

x(X,H) → Hd
x(X, Jx(X)) is surjective. Therefore the short exact sequence splits showing

that Ext1naive(Jx(X),Ga) = 0. Moreover, it is well known, and can be proven using Dieudonné
theory, that Extinaive(A,Ga) = 0 for all i > 1 and all commutative unipotent pro-algebraic
group A over k (see [DG70] proposition V-1 5.1 and 5.2). 2

We thus know that ψi
Ga

is an isomorphism for all i. It remains to treat the case of a general
commutative unipotent group G. Any such group possesses a decomposition series whose layers
Gα can be realized in a short exact sequence 0 → Gα → Ga → Ga. The associated long exact
sequences and the lemma easily implies that ψi

G is also an isomorphism for all i (note that the
domains and codomains of ψi

G can be non-zero for i = 1). 2

Remark 3.12. (1) The previous proposition provides a close relation between our algebraic
homology Hsu(X) and the original Grothendieck’s construction J∗(X) of. The former
is a truncated version of the later, but both can be used in order to express the fppf
cohomology of X with coefficients in a commutative group scheme.

(2) The extra conditions onG, being affine for i > 0 and unipotent for i > 1, does not appear
in Grothendieck’s original construction. This is because the construction is made using
the Zariski topology instead othe fppf topology, and higher Zariski cohomology with
coefficients in group schemes vanishes outside of the unipotent context.
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4. Partial generalization to more general schemes

In this section we partially extend the results of the previous sections to the more general
case of schemes over arbitrary bases. For this, we restrict ourselves to the unipotent part of
algebraic homology and use the formalism of commutative groups in affine stacks (in the sense
of [Toe06]) as replacement for complexes of abelian sheaves with unipotent cohomolgy sheaves.
On the way, we develop the general framework of affine homology, the natural homology theory
associated to affine stacks.

We fix a base commutative ring k. We will work from now with the fpqc topology on affine
k-schemes, so Stk will denote the ∞-category of hypercomplete fpqc-stacks on Affk.

4.1. Affine homology. When C = Stk is the ∞-category of stacks over k, AbC is naturally
equivalent to AbStk (already used previously in this work, but in the setting of the fppf
topology), and is identified with the ∞-category of connective complexes of sheaves of abelian
groups on the site of affine k-schemes with the fppf topology.

Definition 4.1. The ∞-category of commutative affine group stacks over k is defined to be
the full sub-∞-category of AbStk consisting of all commutative group stacks E such that for
all n ≥ 0 the underlying stack |E[n]| ∈ Stk is an affine stack in the sense of [Toe06]. The
∞-category of all commutative affine group stacks will be denoted by AbChAffk.

We warn the reader that the notation AbChAffk can be misleading. Indeed, the ∞-category
ChAffk defines another ∞-category Ab(ChAffk), of abelian group objects in ChAffk. Recall
that this is formally defined as the full sub-∞-category of Fun∞(T op,ChAffk), consisting of all
∞-functors sending finite sums in T to finite products in C, and where T is the algebraic theory
of abelian group (i.e. the opposite of the category of free abelian group of finite rank). The
∞-category AbChAffk is smaller than Ab(ChAffk). Indeed, any affine commutative group
scheme G defines an object in Ab(ChAffk). However, we will see below (see proposition 4.2)
that Gm is not an object in AbChAffk. We thus have canonical fully faithful ∞-functors
AbChAffk ↪→ Ab(ChAffk) ↪→ AbStk, but these three ∞-categories are all distinct.

Note also that because affine stacks are stable by small limits in Stk, AbChAffk ⊂ AbStk
is clearly stable by small limits.

An important first observation is the following statement, which identifies the ∞-category
AbChAffk when k is a field. It is the commutative group version of the characterization of
affine stacks by means of their homotopy sheaves which is proven in [Toe06].

Propositon 4.2. If k is a field, then the natural inclusion

AbChAffk ⊂ AbStk

identifies AbChAffk with the sub-∞-category consisting of all E such that for all i ≥ 0 the
sheaf πi(E) is representable by a commutative and unipotent affine group scheme over k.



22 BERTRAND TOËN

Proof. We start by the following lemma.

Lemma 4.3. Let E be an affine stack over k which is endowed with a group structure. Then,
for all i > 0 the sheaves πi(E) are representable by affine unipotent group schemes.

Proof of the lemma. This is already contained in the proof of [Toe06, Cor. 3.2.7] which we
reproduce here for simplicity. Let A = O(E) be the commutative cosimplicial algebra corre-
sponding to E, which is endowed with a H∞-Hopf algebra structure in the sense of [Toe06, Def.
3.1.4], or in other words which is a cogroup in the ∞-category of commutative cosimplicial k-
algebras. As a consequence, H∗(A) is a graded commutative Hopf k-algebra and therefore each
H0(A)-module H i(A) is free (because it corresponds to an equivariant quasi-coherent sheaf on
the group scheme SpecH0(A)), and in particular A is flat as a complex of H0(A)-modules. Let
G = SpecH0(A) and p : E → G the natural projection induced by the canonical morphism
H0(A) → A. The fiber of p is SpecA′, where A′ = A ⊗H0(A) k, which, by the flatness of A
over H0(A), is reduced H0(A′) ≃ k. By [Toe06, Thm. 2.4.5] the corresponding affine stack
E ′ = SpecA′ is pointed and connected, and thus all the sheaves πi(E ′) are representable by
unipotent group schemes. The long exact sequence in homotopy therefore implies the lemma,
as πi(E) ≃ πi(E

′) for all i > 0. 2

The lemma 4.3 as the following important consequence: for any object E ∈ AbChAffk,
the homotopy groups πi(E) are all representable by unipotent group schemes, for any i ≥ 0.
Indeed, by the lemma we already know that this is the case for i > 0. We now consider E[1],
and by definition we know that E[1] is again a group object in affine stacks. In particular the
lemma implies that π1(E[1]) ≃ π0(E) is representable by a unipotent group scheme.

Conversely, let E ∈ AbStk be an object such that the sheaves πi(E) are representable by
unipotent group schemes. We have to show that each stack |E[n]| ∈ Stk is affine. But, the
classifying stack B(|E[n]|) is affine because of [Toe06, Thm. 2.4.1], and thus so is Ω∗B(|E[n]|) ≃
|E[n]| as affine stacks are stable by limits. 2

As a direct consequence of the proposition 4.2 we have the following corollary, which is the
abelian analogue of the characterizations of affine stacks as being limits of stacks of the form
K(Ga, n).

Corollary 4.4. We continue to assume that k is a field. The sub-∞-category AbChAffk ⊂
AbStk is the smallest sub-∞-category which is stable by small limits and contains all the objects
Ga[n] for all n ≥ 0.

Proof of the corollary. Let C ⊂ AbStk be the smallest sub-∞-category containing Ga[n] and
stable by small limits. Clearly C is contained in AbChAffk, and we know that AbChAffk is
stable by limits and that it contains all the objects Ga[n]. The converse is a direct consequence
of Postnikov decomposition and the proposition. By [Toe20, Prop. B1], Postnikov towers
always converge for the fpqc topology (see also [MR22] for a more general statement), and thus
any E ∈ AbChAffk can be written as E ≃ limn τ≤nE. Moreover, the proposition implies that
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each τn(E) belongs to AbChAffk. Finally, we proceed by induction on n to show that each
τn(E) belongs to C, by means of the cartesian squares

τn(E) //

��

0

��
τn−1(E) // πn(E)[n+ 1].

As πn(E) is a unipotent group scheme by proposition 4.2, it is itself contains in C, and thus so
is πn(E)[n+ 1]. 2

We do not know if the corollary 4.2 remains valid over an arbitrary base ring k. We thus
restrict our notion of commutative affine group stacks to a notion of affine homology types, by
considering all the objects generated by limits of Ga[n].

Definition 4.5. The ∞-category of affine homology types over k is the smallest sub-∞-category
of AbStk which is stable by small limits and contains the objects Ga[n] for all n ≥ 0. It is
denoted by

̂AbChAffk ⊂ AbStk.

As a first observation, all the objects Ga[n] are commutative affine group stacks, and thus
we clearly have ̂AbChAffk ⊂ AbChAffk. However, outside of the case of a base field we do
not know if this inclusion is strict. In any case, we will see below that ̂AbChAffk is better
behaved than AbChAffk, thanks to the following proposition. We do not know if the similar
statement holds true for AbChAffk.

Propositon 4.6. The forgetful ∞-functor of ∞-categories ̂AbChAffk ↪→ ChAffk, sending E
to |E|, possesses a left adjoint.

Proof. We consider the inclusion of opposite ∞-categories. We know that (ChAffk)
op is

equivalent to the ∞-category associated with the combinatorial model category of commutative
cosimplicial k-algebras by means of the Spec functor (see [Toe06]). Therefore, (ChAffk)

op is
a presentable ∞-category. Moreover, ( ̂AbChAffk)

op is generated by colimits by the small set
of objects Ga[n]. Moreover, when considered as objects in ( ̂AbChAffk)

op, the objects Ga[n]
are small, or more precisely Ga[n] are cosmall objects in AbChAffk as this is implied by the
following lemma.

Lemma 4.7. Let C be a complete ∞-category and Ab(C) be the ∞-category of abelian group
objects in C. Let G ∈ Ab(C) be an object satisfying the following two conditions.

(1) The underlying object G is cocompact in C: MapC(−, G) sends filtered limits to filtered
colimits.

(2) The object G is truncated in C: there is an n such that Map(E,C) is n-truncated for
all E ∈ c.
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Then, G is cocompact as an object in Ab(C).

Proof of the lemma. The mapping spaces between two abelian group objects H and G in C
can be computed as a certain homotopy limit over ∆ of the form

MapAb(C)(H,G) ≃ lim
i∈∆

MapC(H
n(i), Gm(i)),

where i 7→ n(i) and i 7→ m(i) are certain functions. The existence of such a limit decomposi-
tion can be seen for instance using MacLane resolutions of abelian group objects as presented
in [Bre70, §2]. Because G is n-truncated this homotopy limit reduces to a finite homotopy limit,
which in turn will commute with filtered colimit. The result follows easily as all objects Gm(i)

are cocompact in C. 2

The lemma implies that ( ̂AbChAffk)
op is a presentable ∞-category It is therefore a formal

consequence of Freyd representability theorem (see [NRS20, Thm. 4.1.3]) that the forgetful
∞-functor (AbChAffk)

op → (ChAffk)
op, which commutes with small colimits, admits a right

adjoint. 2

We warn the reader that the forgetful ∞-functor AbStk → Stk also possesses a left adjoint,
given by F 7→ Z⊗ F , but that the square

ChAffk
//

��

Stk

��
̂AbChAffk

// AbStk

of course does not commute, even when k is a field. Indeed, the construction ChAffk →
̂AbChAffk involves considering some free abelian group objects in ChAffk, and thus involves

certain colimits, which are computed in ChAffk (and the inclusion ChAffk ⊂ AbStk does not
preserve colimits).

We also remind that there are set theory issues in the situation as the site of affine schemes
Affk is not a small site. As a result, the inclusion ChAffk ⊂ Stk does not possess a left
adjoint as objects in Stk might not be small. However, we can restrict ourselves to small stacks
Stsmk ⊂ Stk, which are all objects that can be written as small colimits of affine schemes. By
definition affine stacks are small, as they are spectrum of small commutative cosimplicial k-
algebras, so we have an inclusion ChAffk ↪→ Stsmk . This last inclusion does have a left adjoint,
called the affinization and denote by F 7→ (F ⊗k)u. It is explicitely given by considering O(F ),
the commutative cosimplicial k-algebra of functions on F , which is small as F is assumed to
be small, and setting (F ⊗ k)u ≃ SpecO(F ).

As a result, and including our proposition 4.6, we get an ∞-functor

Hu(−) : Stsmk −→ ̂AbChAffk,

which is a left adjoint to the forgetful ∞-functor | − | : ̂AbChAffk → Stsmk .
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Definition 4.8. For a small stack X ∈ Stk, its affine homology is defined as Hu(X).

Affine homology can be hard to compute. We give here the simplest example namely the
affine homology of a constant stack with finite 1-connected fibers. Let K be a 1-connected
finite simplicial set, which is considered as a constant stack K ∈ Stk. As such it is a colimit of
the punctual stack ∗ taken over the category of simplices in K. Therefore, its affine homology
is given as

Hu(K) ≃ co lim
∆(K)

Hu(∗),

and we are thus reduced to compute the affine homology of the point. For this, we recall the
existence of the commutative group scheme H of [Toe20], which can be defined as the spectrum
of the Hopf algebra of integral valued polynomials. Equivalently, H sits inside the group scheme
of big Witt vectors W as the sub-functor of simultaneously fixed points by all Frobenius Fp.
The group scheme H is the additive part of ring scheme structure, for which the multiplication
is induced by the multiplication of Witt vectors.

We claim that Hu(∗) ≃ H, considered as a commutative group for the additive structure.
First of all, as shown in [Toe20] all the K(H, n) are abelian group objects in affine stacks, and
thus H is indeed an object of AbChAffk. Using the presentation as fixed points of Frobenius on
W, it can be checked that H lies furthermore in ̂AbChAffk and thus is an affine homology type.
In [Toe20] is also known that when n > 0 K(H, n) is the affinization of the space K(Z, n), and
thus the natural morphism K(Z, n) → K(H, n), which is a morphism of abelian group objects
induced by the canonical map Z → H, makes K(H, n) into the affinization of K(Z, n). Indeed,
for any abelian group object E in ChAffk, the mapping space MapAbStk(K(Z, n), E) can be
computed by a certain homotopy end

MapAbStk(K(Z, n), E) ≃ hoend
(
(i, j) 7→MapStk(K(Z, n)i, Ej)

)
,

where i and j lives in the category of free abelian groups of finite rank. Similarly, we have

MapAbChAffk
(K(H, n), E) ≃ hoend

(
(i, j) 7→MapChAffk

(K(H, n)i, Ej)
)
.

The affinization of K(Z, n)i ≃ K(Zi, n) being K(Hi, n) (see [Toe20]), we deduce easily that the
natural morphism

MapAbChAffk
(K(H, n), E) −→MapAbStk(K(Z, n), E) ≃ Ωn

∗ (E(k))

is an equivalence for any E ∈ AbChAffk. In other words, the reduced affine homology of Sn is
K(H, n), for any n > 0. But we then have MapAbStk(H, E) ≃ MapAbStk(K(H, 1), K(E, 1)) ≃
Ω∗(K(E, 1)(k)) ≃ E(k), and thus H is indeed the affine homology of ∗ as wanted.

To put things in a more concise manner, we can write, with the notations and conditions
above

Hu(K) ≃ K ⊗H,
where the tensored structure is computed in the ∞-category AbChAffk of commutative affine
group stacks over k.
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For our purpose, two general properties of affine homology are of some importance, namely
base change and filtration by dimension.

Base change. As a start, affine homology is base sensitive, and should rather be written as
Hu(X/k) in order to mention the base ring. Let k → k′ be a morphism of commutative rings,
and X ∈ Stsmk a small stack over k. We denote by ⊗kk

′ the base change from stacks over k to
stacks over k′, and similarly for affine stacks. The base change commutes with limits and thus
induces a well defined base change AbChAffk → AbChAffk′ . As this sends Ga to Ga, base
change restricts to an ∞-functor

⊗kk
′ : ̂AbChAffk → ̂AbChAffk′ .

Therefore, by universal property we have a canonical morphism of affine homology types over
k′

Hu(X ⊗k k
′/k′) → Hu(X/k)⊗k k

′.

This morphism is not an equivalence in general, but we claim it is so when k′ is finite and
of local complete intersection over k. Indeed, by the very definition of affine homology this
would follow formally from the fact that the direct image ∞-functor Rk′/k : AbStk′ → AbStk,
right adjoint to the base change, preserves affine homology types. As these are generated by
limits from the Ga[n], it is enough to show that Rk′/k(Ga[n]) is an affine homology type over
k. But Rk′/k(Ga[n]) is nothing else that |p∗(Ga)[n]|, where p : Spec k′ → Spec k. Moreover,
by assumption on k′/k the stack p∗(Ga)[n] is a linear stack over k associated to the perfect
complex E := (k′)∨[−n], which is the dual of k′[n]. More explicitly, p∗(Ga)[n] can be written as
the spectrum of the cosimplicial commutative k-algebras Symk(E), with E a perfect complex
of k-modules. These linear stacks, as objects in AbStk can be decomposed by considering a
projective resolution of E, and are easily seen to be expressible by limits of stacks of the form
V [n] where V is a vector bundle on Spec k, which are retracts of Gr

a[n] and thus are affine
homology types over k.

An important cases of base change is when k is regular, and k → k(p) is the quotient cor-
responding to a closed point p ∈ Spec k. In this case base change tells us that Hu(X/k)
specializes to Hu(Xp/k(p)) when pull-backed to the point p.

Filtration by dimension. We let X be a k-schemes separated and of finite type over k.
For simplicity we assume that k is noetherian and X is of finite dimension d. We can proceed
as in definition 3.1 and construct a finite filtration on Hu(X/k)

0 = Fd+1Hu(X/k) // FdHu(X/k) // . . . // F1Hu(X/k) // F0Hu(X/k) = Hu(X/k).

The associated graded for this filtration, GrdHu(X/k), defined considering cofibers in ̂AbChAffk,
are affine homology types over k which are related to local cohomology in dimension d as fol-
lows. We first introduce affine homology types of finite presentation, as being the objects
E ∈ ̂AbChAffk being obtained by finite limits and retracts of objects of the form Ga[n]. As
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we have already seen in lemma 4.7 the objects Ga[n] are cocompact in AbChAffk, and thus
any affine homology type of finite presentation are cocompact objects amoung affine homology
types.

Let then E be an affine homology type of finite presentation. We then have

MapAbChAffk
(GrdHu(X), E)) ≃ ⊕x∈X(d)H∗

x(X,E).

Because affine homology type of finite presentation generate the whole ∞-category ̂AbChAffk

by limits, we deduce that we have we have a general formula in terms of local affine homology

GrdHu(X) ≃
∏

x∈X(d)

Hu
x(X).

4.2. Affine homology as a dg-module. We consider the object Ga ∈ AbStk and the corre-
sponding Z-linear dg-algebra of endomorphisms

CGa := REnd(Ga).

We get this way the usual adjunction of ∞-categories

M : (AbStk)
op ⇆ CGa − dg : D,

where M(E) := RHom(E,Ga). As Ga[n] generates ̂AbChAffk by limits, and as Ga[n] are
cocompact objects, it is formal to see that for any E ∈ ̂AbChAffk the adjunction morphism

E −→ D(M(E))

is an equivalence. As a result we get the following corollary.

Corollary 4.9. The ∞-functor M restricts to a full embedding

M : ( ̂AbChAffk)
op −→ (CGa − dg)op.

Its essential image consists of all CGa-dg-modules which are colimits of CGa.

The above corollary implies that for a small stackX its affine homology Hu(X/k) is character-
ized by H(X,Ga), as a dg-module over CGa . The dg-algebra CGa is however quite complicated
in general. It simplifies when Ga is restricted to sites of perfect schemes (see [Bre81]). In par-
ticular, things tend to simplify when the base ring k is perfect (or at least perfectoid). Another
simplification consists of using the group of big Witt vectors W instead of the additive group
Ga, as for instance Ext1(W,W) = 0, and again higher ext vanish when computed over the
site of perfect schemes. Moreover, End(W) is the usual Dieudonné ring so dg-modules over
REnd(W) are closed related to usual Dieudonné modules. However, W is not a cocompact
object in ̂AbChAffk, and therefore the corresponding adjunction with dg-modules is not as
well behaved and relates dg-modules over REnd(W) and certain pro-objects inside AbChAffk.
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