
INFINITESIMAL DERIVED FOLIATIONS

BERTRAND TOËN AND GABRIELE VEZZOSI

Abstract. We introduce a notion of infinitesimal derived foliation. We prove it is related to
the classical notion of infinitesimal cohomology, and satisfies some formal integrability proper-
ties. We also provide some hints on how infinitesimal derived foliations compare to our previous
notion of derived foliations of [Toë20,TV].
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Introduction

The object of this short note is to present a notion of infinitesimal derived foliations on
general schemes and stacks over bases of arbitrary characteristics (see Definition 2.1). This
notion is slightly different from the one exposed in [Toë20] but it is based on similar ideas. By
definition, an infinitesimal derived foliation on X consists of a perfect complex E (the cotangent
complex of the foliation) together with an action of G0 = Ω0Ga, the loop group of the additive
group, on the total space V(E[−1]) of the shift E[−1], compatible with the natural gradings.
This is very similar to the definition in [Toë20], except that the group BKer is replaced here by
G0, and the shift by 1 is replaced by a shift by −1. These changes may sound purely aesthetic
choices, but outside of characteristic zero these two notions of derived foliations are, in fact,
different.
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2 BERTRAND TOËN AND GABRIELE VEZZOSI

A major advantage of infinitesimal derived foliations is that they satisfy several formal in-
tegrability results (see Corollary 4.2) that do not hold for derived foliations. The key point
here is that the natural cohomology theory related to infinitesimal derived foliations is (Hodge-
completed derived) infinitesimal cohomology, whereas derived foliations are related to (Hodge-
completed derived) de Rham cohomology. This relation with infinitesimal cohomology makes
it possible to formally integrate any (smooth) infinitesimal derived foliation by a smooth for-
mal groupoid. In a way, infinitesimal derived foliations can be thought of as derived foliations
endowed with extra conditions/structures. This resembles the difference between foliations
and restricted foliations in characteristic p > 0 (see for instance [Eke87, Prop. 2.3] as well
as [Miy87, Def. 3.6]).

The first section of this paper contains results on derived affine stacks, that are a derived
extension of affine stacks of [Toe06]. We present in particular algebraic models for those, using
a certain model category of cosimplicial-simplicial commutative algebras, which might be of
independent interests. These models will be particularly useful in our last section where we
construct the red-shift construction for graded derived affine stacks (see §5). The second section
presents the general definition of infinitesimal derived foliations and their basic properties. In
section §3 we study the cohomology of infinitesimal derived foliations and prove that it recovers
the usual notion of infinitesimal cohomology when applied to the tautological foliation. This
cohomology comparison is then used to construct, for any smooth infinitesimal derived foliation
F on a smooth scheme X, a smooth formal groupoid GF → X, and we show that F 7→ GF
produces an equivalence of categories. This result has to be related with [Eke87, Prop. 2.3], and
in a way, is one possible generalization of Ekedahl’s result. Finally, in the very last section, we
study the relations between infinitesimal derived foliations and our original notion of derived
foliations (see [Toë20, TV]). Unfortunately the results here are not optimal, and we leave
several open questions on the way. We think that there should exists a forgetful functor from
infinitesimal derived foliations to derived foliations, obtained by some application of the red-
shift construction, but we could not find a completely satisfying construction. The reader
should consider this last part as a suggestion for future research.

As a final comment, this note will appear in an extended form as a chapter of a book in
preparation on the subject ( [TV]).

Acknowledgments. We thank J. Nuiten and J. Fu for several discussions on the content
of this paper. The idea of infinitesimal derived foliations has been inspired by J. Fu’s current
work on the structure of the Chevalley-Eilenberg complex of partition Lie algebras.

1. Derived affine stacks

1.1. Cosimplicial-simplicial algebras. We let denote by sCR be the category of simplicial
commutative rings. It is endowed with its usual model category structure for which equivalences
and fibrations are defined on the underlying simplicial sets.
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Similarly, we denote by csCR the category of cosimplicial objects in sCR, or equivalently
of cosimplicial-simplicial commutative rings. Its objects will be denoted by A∗

∗, where the
superscript will refer to the cosimplicial direction and subscript to the simplicial direction. The
category csCR can be endowed with a tensored and cotensored structure over the category
sSet of simplicial sets. We warn the reader here that there are several natural such structures
and that the choice we make here is important for the sequel. For a simplicial set K and an
object A of csCR, we define the cotensored structure by AK by the formula

(AK)qp := (Aq
p)

Kq

for [p] ∈ ∆op and [q] ∈ ∆. The tensored structure K ⊗ A, for A ∈ csCR and K ∈ sSets,
is defined by the usual adjunction formula Hom(K ⊗ A,B) ≃ Hom(A,BK), for arbitrary
B ∈ csCR. Similarly, we have a canonical simplicial enrichment for which the simplicial Homs
are denoted by Hom and are defined by

Hom(A,B)p := HomcsCR(A,B
∆p

).

By considering the natural embedding ModZ ⊂ C(Z), from Z-modules to cochain com-
plexes, any object A ∈ csCR can be considered, by forgetting the multiplicative structure, as a
cosimplicial-simplicial object in C(Z). We denote by Totπ(A) the complex equals to

∏
q−p=n A

q
p

in cohomological degree n and whose differential is given by the alternated sums of the faces
and cofaces of the cosimplicial-simplicial diagram. Equivalently, A can be first turned into a
bi-complex, by individual totalisations along the cosimplicial and the simplicial directions, and
Totπ(A) can then be realized as the product-total complex of this bicomplex. Note also that
Totπ(A) is a model for the homotopy limit-colimit of A

Totπ(A) ≃ holim[p]∈∆
(
hocolim[q]∈∆opAq

p

)
∈ C(Z).

Definition 1.1. A morphism A → B in csCR is a completed quasi-isomorphism if the induced
morphism Totπ(A) → Totπ(B) is a quasi-isomorphism of complexes.

We warn the reader that even though the categories csCR and scCR, of cosimplicial-
simplicial commutative rings and of simplicial-cosimplicial rings, are equivalent, the notion
of completed quasi-isomorphisms is not the same as the notion of weak equivalences used for
instance in [BCN21].

Theorem 1.2. The category csCR is endowed with a model category structure for which the
weak equivalences are the completed quasi-isomorphism, and the fibrations are the epimor-
phisms. This model category structure is moreover cofibrantly generated and is a simplicial
model category for the above mentioned simplicial enrichment.

Proof. As fibrations1 and equivalences are defined via the functor Totπ, the proof of the
theorem consists of transferring the projective model structure on C(Z) to csCR via the functor
Totπ. For this we apply the path object argument (see for instance [BM03, §2.6]).

1Note that f : A → B in csCR is surjective iff Totπ(f) is.
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The functor Totπ is a right adjoint whose left adjoint sends a complex E ∈ C(Z) to the free
commutative ring over the cosimplicial-simplicial module given by

(p, q) 7→ (C∗(∆p)⊗ C∗(∆
q)⊗ E)0/Imd−1,

where C∗(∆p) and C∗(∆
q) are the cohomology and homology complexes of the standard simplex

∆p and ∆q. This left adjoint will be denoted by Lϕ, as being the composition of the free
commutative ring functor L : csMod → csCR, with the functor ϕ : C(Z) → csMod defined by
the above formula. Clearly, the functor Totπ preserves small objects (but does not commute
with filtered colimits in general). In order to apply [BM03, §2.6] we thus simply have to prove
that csCR possesses a fibrant replacement functor and that all fibrant object possesses a path
object. But all objects are fibrant by definition, and we are thus reduced to show the existence
of path objects. For this we use the following lemma.

Lemma 1.3. For any simplicial set K and any A ∈ csCR, there exists a canonical quasi-
isomorphism

Totπ(AK) ≃ Totπ(A)K ,

where for E ∈ C(Z) and K ∈ sSet we define

EK := holim[p]∈∆E
Kp .

Proof of the lemma. We remind that for any functor F : ∆×∆ → dg (or more generally any
bi-cosimplicial object in a complete ∞-category), the homotopy limit of F can be computed,
up to a quasi-isomorphism, either component-wise, or diagonally

holim[p]∈∆F (p, p) ≃ holim[p]∈∆holim[q]∈∆F (p, q).

We apply this to the functor sending ([p], [q]) to the complex N(Aq
∗)

Kp , where N : sMod → dg
is the normalization construction. Computing the homotopy limit diagonally yields Totπ(AK),
whereas the double homotopy limit construction yields Totπ(A)K . 2

Lemma 1.3 now implies the existence of path objects. Indeed, for A ∈ csCR an explicit path
object is given by A → A∆1 → A∂∆1

= A × A. The fact that the constant map morphism
A → A∆1 is a completed quasi-isomorphism follows from the lemma 1.3. The fact that A∆1 →
A∂∆1

= A× A is a fibration simply follows from the fact that it is a levelwise epimorphism as
this can be checked easily using the explicit formula for AK .

In order to finish the proof of the theorem, we are left to showing that the simplicial enriche-
ment is compatible with the model category structure. In other words, we must show that for
any cofibration of simplicial sets i : K ↪→ L and any fibration f : A → B in csCR, the induced
morphism

f i : AL −→ BL ×BK AK

is a fibration, which is also an equivalence if i is a trivial cofibration or f is a trivial fibration.
The fact that the morphism f i is a fibration is clear because fibrations are epimorphisms and
because of the explicit formula for the exponentiation by a simplicial set in csCR. Finally, the
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fact that f i is also a weak equivalence when i or f is so simply follows from Lemma 1.3. 2

Definition 1.4. The ∞-category of cs-rings is the ∞-category obtained from csCR by inverting
the completed quasi-isomorphisms. It is denoted by csCR (or by csCRU if one wants to specify
cosimplicial-simplicial rings belonging to a given universe U).

Remark 1.5. We note also that the model structure on csCR can be equivalently be ob-
tained by first constructing a model structure on csModZ, the category of cosimplicial-simplicial
abelian groups, where again the equivalences and fibrations are defined via the Totπ functor.
The model structure on csCR can then be obtained by transferring along the forgetful functor
csCR → csModZ, with left adjoint given by the free commutative cosimplicial-simplicial ring.

Remark 1.6. To finish, we mention that it is possible to a construct an ∞-functor Totπ :
csCR −→ LSym − Alg, from our ∞-category of cosimplicial-simplicial commutative rings to
the ∞-category of derived rings, namely modules over the LSym-monad. Here we denote by
LSym the monad associated to the derived commutative operad as in [BCN21, Ex. 3.71].
This ∞-functor simply sends A to limq A

q
∗, where the limit is taken in LSym− Alg and Aq

∗ is
considered as a connective LSym-algebra and thus as an object in LSym−Alg. This ∞-functor
is the right adjoint of an adjunction, and preserves free objects over perfect complexes. It is
likely that Totπ is an equivalence of ∞-categories when restricted to nice enough objects.

1.2. Spectrum of cosimplicial-simplicial rings. For a fixed commutative simpicial ring
k ∈ sCR, we can work relatively over k and define the model category k−csCR of cosimplicial-
simplicial commutative k-algebras, and its associated ∞-category k−csCR. As usual, we have
a natural equivalence of ∞-categories

k − csCR ≃ k/csCR,

where k is considered as an object in csCR which is constant is the cosimplicial direction.
We consider dAffk := (k − sCR)op, the model category of derived affine k-schemes, which

is defined to be the opposite category of that of simplicial commutative k-algebras. Remind
from [TV08] that it can be endowed with the fpqc model topology, and that we can consider
the model category of (hyper-complete) stacks dAff∼,fpqc

k . There are here some set-theoretical
issues, that can be solved, as usual, by fixing two universes U ∈ V. By definition k − sCR
refers here to U-small simplicial k-algebras, and dAff∼,fpqc

k is then the category of functors
k − sCR → sSetV to V-small simplicial sets.

We then consider a functor

Spec∆ : k − csCRop
V −→ dAff∼,fpqc

k ,

from V-small cosimplicial-simplicial commutative k-algebras to dAff∼,fpqc
k . It is defined by

sending A ∈ k − csCRV to the functor Spec∆ A : sCR → sSetV defined by

Spec∆ A : B 7→ Hom(A,B) = HomcsCR(A,B
∆•
),
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where Hom are the simplicial Hom’s of the simplicial enrichement described in the previous
section, and B is considered as an object in k − csCRV by viewing it as constant in the
cosimplicial direction.

Propositon 1.7. The functor Spec∆ : k − csCRop
V −→ dAff∼,fpqc

k is right Quillen, and the
induced functor on ∞-categories

Spec∆ : k − csCRU −→ dStk

is fully faithful. The essential image of Spec∆ is the smallest full sub-∞-category of dStk
containing the objects K(Ga, n) for various n, and which is stable by U-small limits.

Proof. This is proven in a very similar manner than [Toe06, Cor. 2.2.3]. The left adjoint
to Spec∆, denoted by O, sends a representable presheaf hB = Hom(B,−) : k − sCR → sSet
to B ∈ k − csCR, which is considered as constant in the cosimplicial direction. It also sends
an object of the form K × hB, for a simplicial set K ∈ sSet, to BK ∈ k − csCR. Finally, it
is uniquely defined by these properties together with the requirement that it sends colimits in
dAff∼,fpqc

k to limits in k − csCR.
To prove that Spec∆ is right Quillen we use that dAff∼,fpqc

k is a left Bousfield local-
ization of the levelwise projective model structure on the category of simplicial presheaves
Fun(k − sCRU, sSet) obtained by inverting fpqc-local equivalences and equivalences in sCR
(see [TV08]). Therefore, by general facts about Bousfield localizations, it is enough to show
that Spec∆ is a right Quillen functor for the levelwise projective model structure, and moreover
that for any cofibrant A ∈ k − csCR, Spec∆ (A) is a fibrant object in dAff∼,fpqc

k . The first of
these statements easily follows from the fact that k − csCR is a simplicial model category in
which every object is fibrant, and thus that if A → A′ is a (trivial) cofibration in k − csCR,
for any C ∈ k − sCR the morphism Hom(A′, C) → Hom(A,C) is a (trivial) fibration of sim-
plicial sets. For the second of these statements, let A ∈ k − csCR be a cofibrant object. Any
equivalence B → B′ in k−sCR obviously induces an equivalence in k− csCR when considered
both B and B′ as constant in the cosimplicial direction, and thus Hom(A,B) → Hom(A,B′)
is an equivalence of simplicial sets. This shows that Spec∆(A) is fibrant when the topology
is the trivial topology. Finally, if B = holimiBi is a homotopy limit in k − sCR, it is also a
homotopy limit in k−csCR, and thus the natural morphism Hom(A,B) → holimiHom(A,Bi)
is an equivalence. As the fpqc model topology is subcanonical, this implies that Spec∆(A) is
indeed a stack for the fpqc topology, and thus fibrant as an object in dAff∼,fpqc

k (see [TV08]).
To finish the proof of the proposition, let A ∈ k− csCRU and X = Spec∆(A). By definition

of the simplicial structure on k − csCR, the functor X is the geometric realization of the
simplicial object q 7→ hAq

∗ , where hAq
∗ : k − sCR → sSet is corepresented by Aq

∗ ∈ k − sCR. In
other words, we have Spec∆(A) ≃ hocolimqh

Aq
∗ . Therefore, the adjunction morphism

A −→ O(Spec∆(A))

is the canonical morphism A → holimqA
q
∗ in Ho(k− csCRU). This canonical morphism is obvi-

ously an equivalence, showing the fully faithfulness property in the proposition. It is then formal
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that the essential image of RSpec∆ is stable by limits. It also contains the objects K(Ga, n),
as these are the images of Lϕ(Z[−n]), where Lϕ : C(Z) → k− csCR is the left adjoint to Totπ.
Finally, as k− csCR is cofibrantly generated, any object is equivalent to a I-cell object, where
I is the image by Lϕ of the generating cofibrations in C(Z). The images of I by Spec∆ are
equivalent to morphisms of the form ∗ → K(Ga, n), so that any object is the essential image
of RSpec∆ lies in the smallest sub-∞-category containing the K(Ga, n) and stable by limits. 2

Definition 1.8. The ∞-category of (k-linear) derived affine stacks is the essential image of
RSpec∆ : k − csCRop

U ↪→ dStk. It is denoted by dChAffk.

The above notions and results also have graded versions, for which the details are left to the
reader. We denote by k − csCRgr the category of graded cosimplicial-simplicial commutative
k-algebras. We endow this category with the model category structure for which equivalences
and fibrations are defined by the graded Tot functor to graded complexes Totπ : k− scCRgr →
C(Z)gr, defined by taking the Totπ of each graded component. The proof of the existence of this
model category structure follows the same lines as in the non-graded case. The corresponding
∞-category will be denoted by k − csCRgr.

We consider the strict multiplicative group Gst
m ∈ dAff∼,fpqc

k , given by the functor sending
B ∈ k − sCR to the group B∗

0 of invertible elements in the ring B0 of 0-simplices in B. This
is a group object in the model category dAff∼,fpqc

k , which is not a fibrant object (it does not
preservers equivalences in B), but its image in dStk is the usual multiplicative group scheme
Gm. Indeed, Gst

m = hk[t,t−1] is corepresented by k[t, t−1], and, as shown in [TV08], a fibrant
model for hA is the derived scheme SpecA : B 7→ Map(A,B). In particular, we have that the
model category Gst

m − dAff∼,fpqc
k , of Gst

m-equivariant objects in dAff∼,fpqc
k , is a model for the

∞-category Gm − dStk, of Gm-equivariant derived stacks, called graded derived k-stacks.
The graded version of the spec functor is the functor

Spec∆,gr : (k − csCRgr)op −→ Gst
m − dAff∼,fpqc

k ,

sending A ∈ k− csCRgr to Hom(A,−), endowed with the natural Gst
m-action coming from the

grading on A. More explicitly, for B ∈ k − sCR, the set of q-simplices of Spec∆,gr(A)(B) is
the set of morphisms Hom(Aq, B), which is endowed with a B∗

0-action as follows. For b ∈ B∗
0

and f : Aq → B, we define bf : Aq → B by the formula (bf)(x) = bn.f(x) for a homogeneous
element x of degree n. As in the non-graded case, Spec∆,gr is a right Quillen functor, and the
induced ∞-functor

RSpec∆,gr : (k − csCRgr
U )op −→ Gm − dStk

is fully faithful. Its essential image is the smallest sub-∞-category containing all the objects
K(Gχ

a , n), for n ≥ 0 and χ ∈ Z, where Gm acts on Ga with weight χ ∈ Z, and which is stable
by U-small limits.

Definition 1.9. The ∞-category of graded derived affine k-stacks is the essential image of
RSpec∆,gr : (k − csCRgr

U )op ↪→ Gm − dStk. It is denoted by dChAff gr
k .
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We finish this section by recalling the notion of linear derived stack, already introduced and
studied in [Mon21]. We first notice that the Tot functor Totπ : csModk −→ C(Z) admits a
natural lax monoidal structure. Therefore, it gives rise to an ∞-functor

Totπ : csModk −→ dgk,

where csModk is the ∞-category of cosimplicial-simplicial k-modules. This ∞-functor turns
out to be an equivalence of ∞-categories, and we denote by ϕ : dgk → csModk its inverse.

For any object E ∈ dgk, we consider ϕ(E) ∈ csModk, and define

Sym∆(E) := Lϕ(E) ∈ csCRgr

the free cosimpicial-simplicial commutative ring generated by ϕ(E) (same notation as in the
proof of Theorem 1.2). Being a free commutative ring, Sym∆(E) comes natural equipped with
a graduation, and thus is considered as an object in the ∞-category csCRgr.

Definition 1.10. The k-linear derived stack associated to a complex E ∈ dgk, is the graded
derived affine k-stack defined by

V(E) := RSpec∆,gr (Sym∆(E)) ∈ Gm − dStk.

Note that by construction the functor of points of V(E) sends B ∈ k−sCR to Mapdgk
(E,N(B)),

where N(B) is the normalisation of B as a simplicial k-module. The Gm-action is then the
natural action of invertible elements of B on B itself.

It is proven in [Mon21] that the ∞-functor sending E to V(E) is fully faithful when restricted
to bounded above k-dg-modules E, and in particular for perfect k-dg-modules E.

2. Infinitesimal derived foliations

As before, we fix k a base simplicial commutative ring.

We let Ga be the additive group scheme over k, and consider G0 := Ω0Ga its derived loop
scheme based at the origin. This is a derived affine group scheme over k, and as an affine
derived scheme is given by G0 ≃ Spec k[ϵ−1], where k[ϵ−1] is the free commutative simplicial
k-algebra over one generator ϵ in homotopical degree 1. The standard Gm-action on Ga of
weight 1 induces a Gm-action on G0 corresponding to the grading on k[ϵ−1] for which ϵ−1 is of
weight −1. We then form the semi-direct product Hπ := Gm ⋉ G0, which is a derived affine
group scheme over k.

Before going further, let us mention that representations of the group Hπ are precisely the
graded mixed complexes for which the mixed structure is of cohomological degree 1 (as opposed
of the usual conventions taken for instance in [PTVV13,Toë20,TV] where the cohomological
degree is −1). More precisely, we have an equivalence of symmetric monoidal ∞-categories

QCoh(BHπ) ≃ +ϵ− dggr
k ,
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where +ϵ−dggr
k is the symmetric monoidal ∞-category of graded mixed complexes with mixed

structure of cohomological degree 1. The ∞-category of usual graded mixed complexes with
mixed structure of degree −1 is denoted by ϵ − dggr

k , and is itself given by representations of
the group stack H = Gm ⋉ BKer of [MRT22]. It is well known that there exists a symmetric
monoidal equivalence of ∞-categories

RS : ϵ− dggr
k ≃ +ϵ− dggr

k

called the red-shift self equivalence. The ∞-functor RS sends a graded complex ⊕nE
(n) to

⊕nE
(n)[−2n], and thus transforms a mixed structure E(n) → E(n+1)[−1] of cohomological degree

−1 to a mixed structure E(n)[−2n] → E(n+1)[−2n − 1] ≃ E(n+1)[−2n + 2][1] of cohomological
degree 1. To summarize, we have a commutative square of symmetric monoidal equivalences

QCoh(BH)
∼ //

∼
��

QCoh(BHπ)

∼
��

ϵ− dggr
k RS

// +ϵ− dggr
k .

It is proven in [MRT22] that QCoh(BH) is equivalent, as a symmetric monoidal ∞-category,

to the ∞-category d̂gfil
k of complete filtered complexes. This equivalence is given by the Tate

realization | − |t sending a graded mixed complex ⊕nE
(n) to ⊕i≤0

∏
p≥i E

(p)[−2p] endowed with
the total differential, sum of the mixed structure and the cohomological differential. Similarly,
QCoh(BHπ) is equivalent to d̂gfil

k by means of the corresponding Tate realization |−|t, sending
⊕nE

(n) to colimi≤0(
∏

p≥iE
(p)) with the total differential.

For any derived stack X ∈ dStk, we can form Lgr
π (X/k) := Map(G0, X), the derived Hom

stack (relative to k) from G0 to X. It comes equipped with a natural action of H, where G0

acts on itself by translations and Gm acts by the grading on G0. Together with this Hπ-action,
Lgr

π (X) is the cofree Hπ-equivariant derived stack generated by X endowed with the trivial
Gm-action.

Definition 2.1. Let X = SpecA be a derived affine scheme over k. A (perfect) infinitesimal
derived foliation on X (relative to k) consists of a Hπ-equivariant derived stack F together with
a Hπ-equivariant morphism p : F → X, such that, as a Gm-equivariant stack over X, F is a
perfect linear derived affine stack (i.e. of the form V(E) for E a perfect complex on X).

The infinitesimal derived foliations on X (relative to k) form an ∞-category Folπ(X/k),
which by definition is a full sub-∞-category of (Hπ − dStk)/Lgr

π (X/k), the Hπ-equivariant
derived stacks over Lgr

π (X/k). The construction X 7→ Folπ(X/k) can be promoted to an
∞-functor Folπ(−/k) : dAffop

k → Cat∞, by defining pull-backs as follows: for a morphism
f : X → Y of affine derived k-schemes, we define f ∗ to be induced by the base change

(Hπ − dStk)/Lgr
π (Y/k) −→ (Hπ − dStk)/Lgr

π (X/k),
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along the induced morphism Lgr
π (f/k) : Lgr

π (X/k) → Lgr
π (Y/k). As the ∞-functor Folπ(−/k)

clearly is a hyperstack for the fpqc topology, it can be uniquely extended to a colimit preserving
∞-functor

Folπ(−/k) : dStk → Catop∞.

Let X be a derived affine k-scheme, and F ∈ Folπ(X/k) be an infinitesimal derived foliation
on X. By [Mon21], the linear stack F → X is of the form V(LF/k[−1]), for some uniquely
defined perfect complex LF/k on X.

Definition 2.2. With the notations above, the complex LF/k is called the cotangent complex
of F (relative to k). It is also simply denoted by LF if k is clear from the context.

When X is a general derived stack and F ∈ Folπ(X/k), it is also possible to define the
cotangent complex LF/k, as a quasi-coherent complex over X. This construction is not straight-
forward, as cotangent complexes in the sense above are not stable by pull-backs and thus do not
glue naively on stacks. When X is moreover a derived Artin stack, the cotangent complex LF/k

is a perfect complex over X. This global aspects of cotangent complexes will not be studied in
details in this note, and we refer to [TV] for more on the subject. However, the special case
where X is a derived Deligne-Mumford stack presents no difficulties, as the cotangent complex
of Definition 2.2 are stable by étale pull-backs, and thus will glue globally on X. This applies
in particular to the case where X is any derived scheme.

Let X be a derived affine scheme of finite presentation over k. The ∞-category Folπ(X/k)
admits a final object, namely F = Lgr

π (X/k). It is denoted by ∗X/k, and its cotangent complex
is naturally equivalent to LX/k, the cotangent complex of X. Indeed, it is easy to see, simply
by contemplating the functors of points and using the very definition of the cotangent complex,
that Map(G0, X) ≃ V(LX/k[1]). Similarly, the initial object in Folπ(X/k) exists, is denoted
by 0X/k, and its cotangent complex is 0. It corresponds to the constant-map morphism F =
X −→ Lgr

π (X/k).

3. Infinitesimal cohomology

Let X be a derived Artin stack of finite presentation over k, and F ∈ Folπ(X/k) be an infin-
itesimal derived foliation on X. We define the ∞-category of quasi-coherent complexes along
F as follows. We first consider QCoh([F/Hπ]), the ∞-category of quasi-coherent complexes on
the quotient stack [F/Hπ] (which is also, by definition, the ∞-category of Hπ-equivariant quasi-
coherent complexes on F). The ∞-category QCohF(X) is defined as the full sub-∞-category
of QCoh([F/Hπ]) whose objects E are graded free: the pull-back of E on [F/Gm] is of the form
p∗(E0) where p : [F/Gm] → X is the natural projection.

Definition 3.1. With the notations above, the ∞-category of quasi-coherent complexes along F
is QCohF(X). For E ∈ QCohF(X), the infinitesimal cohomology of X along F with coefficients
in E is defined to be

Ĉ∗
inf(F , E) := q∗(E) ∈ dgk

where q : [F/Hπ] −→ Spec k is the structural map.
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The definition above will be justified by our next result, stating that when F = ∗X/k and
E = OX , Ĉ∗

inf(F , E) coincides with (completed derived) infinitesimal cohomology. For this,
recall that if X → Spec k is a smooth affine scheme, we have the infinitesimal stack Xinf

(relative to k), defined by the functor sending A ∈ k − sCR to X(Ared) (where Ared = π0(A)red
by definition). In characteristic zero, the functor Xinf is often denoted by XDR ( [Sim96]). We
prefer to avoid using the notation XDR in non-zero characteristic, and use Xinf instead, as the
cohomology of Xinf computes infinitesimal cohomology and not de Rham cohomology. As any
arbitrary derived stack, Xinf possesses a cohomology with coefficients in the structure sheaf O,
denoted by C∗(Xinf ,O).

Theorem 3.2. Let X → Spec k be a smooth affine scheme (and assume k is discrete for
simplicity). There exists an equivalence in dgk

ϕX : C∗(Xinf ,O) ≃ Ĉ∗
inf(∗X/k,OX).

Proof. We first define the morphism ϕX . For this we use the canonical morphism p : X →
Xinf , induced by X(A) → X(Ared) coming from the canonical projection A → Ared. It induces a
natural morphism of Hπ-equivariant derived stacks Lgr

π (X) → Lgr
π (Xinf). By the very definition

of Xinf , and because G0 = Ω0Ga is a derived affine scheme with trivial reduced sub-scheme, we
see that the canonical morphism Xinf → Lgr

π (Xinf) is in fact an (Hπ-equivariant) equivalence
of derived stacks. We thus obtain a natural Hπ-equivariant morphism Lgr

π (X) → Xinf , or
equivalently a morphism of derived stacks

qX : [Lgr
π (X)/Hπ] → Xinf ,

which is clearly functorial in X. It induces, by pull-back, a morphism between the cohomology
complexes with coefficients in O

ϕX := q∗X : C∗(Xinf ,O) → Ĉinf(∗X/k,O)

which is again functorial in X.
To prove that ϕX is an equivalence, we proceed by descent along p : X → Xinf . As X

is smooth, the morphism p is an epimorphism of derived stacks (infinitesimal criterion for
smoothness). The simplicial nerve X∗ of p, that comes equipped with its augmentation X∗ →
Xinf , is an hypercovering. In particular, the canonical morphism

C∗(Xinf ,O) −→ lim
[n]∈∆

O(Xn)

is a quasi-isomorphism. Note that Xn is naturally isomorphic to the formal completion of Xn

along the diagonal embedding X ↪→ Xn, and thus C∗(Xn,O) is the discrete algebra O(Xn) of
functions on the formal scheme Xn.

On the other hand, the fact that X is smooth also implies that X → [Lgr
π (X)/Hπ] is an

epimorphism, because Lgr
π (X) ≃ V(Ω1

X/k[1]) = BTX is the classifying stack of the tangent
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bundle of X. We thus consider the commutative diagram of derived stacks with Hπ-actions

X
id //

��

X

��
Lgr

π (X) qX
// Xinf .

This diagram induces a morphism of simplicial objects on the nerves of the vertical morphisms.
The nerve of the morphism X → Lgr

π (X) can be described as the simplicial object [n] 7→
Lgr

π (X/Xn), where X sits inside Xn via the diagonal embedding, and Lgr
π (X/Xn) is the relative

mapping stack from G0 to X relative to Xn. At the simplicial level n, the morphism induced
on the nerve is thus an Hπ-equivariant morphism of stacks over S

qX,n : Lgr
π (X/Xn) −→ Xn,

(where Xn is the formal completion of Xn along its diagonal).

Lemma 3.3. The morphism qX,n induces by pull-back a quasi-isomorphism of complexes

C∗(Xn,O) ≃ C∗([Lgr
π (X/Xn)/Hπ],O).

Proof of Lemma 3.3. By descent we can easily restrict to the case where X = SpecA is
a smooth affine scheme over S = Spec k. In this case, C∗(Xn,O) identifies canonically with
Â⊗kn, the formal completion of A⊗kn along the augmentation A⊗kn → A induced by the mul-
tiplication map. Similarly, Lgr

π (X/Xn) is canonically identified with the smooth affine scheme
SpecSymA((Ω

1
A/k)

n−1). Therefore, the morphism ϕX,n is a morphism of discrete commutative
algebras

ϕA,n : Â⊗kn −→ |SymA((Ω
1
A/k)

n−1)|t,
where the right hand side is the Tate realization of the graded mixed object SymA((Ω

1
A/k)

n−1)

induced by the Hπ-action on Lgr
π (X/Xn). The morphism ϕA,n is compatible with the canonical

augmentations to A, and thus is a morphism of complete filtered commutative algebras. There-
fore, in order to prove it is an isomorphism it is enough to show that it induces an isomorphism

grϕA,n : Gr∗(Â⊗kn) −→ SymA((Ω
1
A/k)

n−1)

on the associated graded objects. Since A is a smooth k-algebra, the left hand side is canonically
isomorphic to SymA(In/I

2
n), where In is the augmentation ideal. Moreover, we have the usual

natural isomorphism of A-modules In/I
2
n ≃ (Ω1

A/k)
n−1, and thus the morphism grϕA,n can

be identified with a graded endomorphism of the graded algebra SymA((Ω
1
A/k)

n−1). As it
is compatible with augmentations to A it is thus determined by an A-linear endomorphism
of (Ω1

A/k)
n−1. By functoriality in A and in the simplicial direction n, we see moreover that

it is determined by a functorial endormorphism the A-module Ω1
A/k, and thus must be the

multiplication by an element λ ∈ k. To conclude the lemma, we have to show that λ = 1.
By functoriality, it is easy to reduce to the case A = k[T ], a polynomial ring, and by base

change we can even assume that k = Z. In order to check that λ = 1, we can base change
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from Z to Q, and thus even reduce to the case A = Q[T ] and k = Q. As we are now in charac-
teristic zero, C∗([Lgr

π (X/Xn)/Hπ] identifies canonically with the completed de Rham complex
Ĉ∗

DR(X/Xn). Indeed, the red shift equivalence sends the graded mixed cdga O(Lgr
π (X/Xn))

to O(Lgr(X/Xn)). In such terms, the morphism ϕX,n is now the natural isomorphism relating
derived de Rham cohomology of a closed embedding with functions on the formal completion
(see [CPT+17]). 2

Lemma 3.3 concludes the proof of Theorem 3.2, as we have a commutative diagram

C∗(Xinf ,O)
ϕX //

∼
��

Ĉinf(∗X ,OX)

∼
��

lim[n] O(Xn) ∼
// lim[n] Ĉinf(∗X/Xn ,OX).

2

As a direct corollary of Theorem 3.2, we obtain that, for a general derived Artin stack X,
Ĉinf(∗X/k,O) computes the completed derived infinitesimal cohomology of X (relative to k).
Indeed, it is easy to see the ∞-functor X 7→ O(Lgr

π (X/k)), from affine derived schemes to
graded mixed complexes, is equivalent to its extension by sifted colimits from smooth X’s. For
A ∈ sCR, where each An is a smooth algebra over k, we thus have

Ĉinf(∗X ,OX) ≃ colim[n]C
∗((SpecAn)inf ,O),

where the colimit is computed in the ∞-category of complete filtered complexes. The right
hand side of this equivalence is, by definition, the completed derived infinitesimal cohomology
of X, and is denoted by RĈ∗(Xinf ,O). This notion is extended to any derived Artin stack
locally of finite presentation over k by the usual gluing formula

RĈ∗(Xinf ,O) := lim
U→X

RĈ∗(Uinf ,O)

where the limit runs over affine U locally of finite presentation.

Corollary 3.4. For a general derived Artin stack X of finite presentation over k, Ĉinf(∗X/k,O)
recovers the completed derived infinitesimal cohomology of X relative to k

Ĉinf(∗X/k,O) ≃ RĈ∗(Xinf ,O).

4. Integrability by formal groupoids

We believe that infinitesimal derived foliations are formally integrable in a very strong sense
which we do not investigate in this paper in full generality. Rather, we prove here a special
case, showing that the ∞-category of smooth infinitesimal derived foliations over a k-scheme
X is in fact equivalent to the category of formally smooth formal groupoids over X.
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Let X be a smooth k-scheme and F ∈ Folπ(X/k). We say that F is smooth if LF is a vector
bundle over X. In this case, we consider X ×F X, endowed with its natural Hπ-action and
with its canonical projection to X. Note that, as a graded derived stack, X ×F X is of the
form V(LF ), and thus is a the total space of the tangent bundle TF of F . Also, the natural
projection X ×F X → X is Hπ-equivariant. As a result, X ×F X is a new object in Folπ(X),
that will be simply denoted by ΩXF , and called the loop space of F . Being the fiber product of
the canonical morphism 0X → F , the loop space ΩXF comes equipped with a natural structure
of a groupoid object in Folπ(X), acting on the object 0X .

Propositon 4.1. The full sub-∞-category of Folπ(X/k) formed by objects F whose cotangent
complex is of the form V [1] for V a vector bundle on X, is naturally equivalent to the category
of formal schemes Z with an identification Zred ≃ X, which are locally equivalent on X to
X × Âd where d = rank(V ).

Proof. To each F as in the proposition, we associate the sheaf of infinitesimal cohomology
Ĉinf(F) on X. By assumptions on the cotangent complex of F , Ĉinf(F) is a sheaf of discrete
complete filtered commutative algebras, augmented to OX and its associated graded object
is isomorphic to OX [[t1, . . . , td]]. Therefore, ZF := Spf(Ĉinf(F)) is a formal scheme with a
canonical identification Zred ≃ X which is locally equivalent to X × Âd.

The fact that the construction F 7→ ZF induces the equivalence of the proposition simply
follows from the fact that the Tate realization induces an equivalence between graded mixed
complexes and complete filtered complexes (see [TV20, Prop. 1.3.1]). 2

By Proposition 1.7, for any smooth infinitesimal derived foliation F , its loop space ΩXF can
be realized as a groupoid object in formal schemes acting on X

ZΩXF −→ X ×X.

The construction F 7→ ZΩXF provides an functor from the category of smooth infinitesimal
derived foliations on X, and the category of formally smooth formal groupoids over X. We
can produce a functor in the other direction, as follows. Starting from a formally smooth
formal groupoid G → X × X, we can consider its nerve G∗ → X, which is a simplicial
object in formal schemes. Taking functions on G∗ provides a cosimplicial complete filtered
commutative algebra O(G∗) whose associated graded is the cosimplicial algebra of functions on
the simplicial scheme BV , where V = e∗(Ω1

G/X) is the vector bundle of invariant relative forms
on G. Using the equivalence between graded mixed complexes and complete filtered complexes
of [TV20, Prop. 1.3.1], we find that O(G∗) can be realized as a cosimplicial object in the
category of graded commutative algebras endowed with a compatible action on G0. Passing
then to Spec, we get a simplicial diagram of affine schemes endowed with a Hπ-action, whose
underlying simplicial diagram (obtained by forgetting the action) is the usual simplicial scheme
BV . Taking geometric realization we get a Hπ-action on the derived stack V(V [1]), which
defines a smooth infinitesimal derived foliations F on X.

We can then subsume the previous discussion in the following corollary.
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Corollary 4.2. The category of smooth infinitesimal derived foliations on X is equivalent to
the category of formally smooth formal groupoids on X.

We note that the above corollary marks a major difference between derived foliations of
[Toë20,TV] and infinitesimal derived foliations. Indeed, any finite dimensional Lie algebra L
over a field k, defines a smooth derived foliation over k, by considering Sym(L∨[1]) endowed
with the mixed structure coming from the Chevalley-Eilenberg differential. However, it is
not true that any Lie algebra can be integrated to a smooth formal scheme in general. On
the contrary, the above corollary, when applied to X = Spec k with k a field, states that
smooth infinitesimal derived foliations over k form a category equivalent to smooth formal
groups over k. Any such smooth infinitesimal derived foliation is of the form V(V [−1]) for V
a finite dimensional k-vector space V . Therefore, the data of an infinitesimal derived foliation
structure on V(V [−1]) seems to be related to that of a partition Lie algebra structure in the
sense of [BCN21]. The precise comparison is out of the scope of this note, but some recent
results of J. Fu ( [Fu]) make us strongly believe this is possible.

5. Towards a comparison between infinitesimal derived foliations and
derived foliations

5.1. Red shift. We have already mentioned the red-shift equivalence RS : ϵ−dggr
k ≃ +ϵ−dggr

k .
We will now lift this to an endofunctor on the level of derived affine stacks endowed with ac-
tions of H and Hπ. For this, we use our cosimplicial-simplicial models for graded derived affine
stacks. We treat the absolute case of derived affine stacks over Z, the realtive situation follows
from considering graded affine stacks over a given affine derived scheme X = Spec k (trivially
graded). For technical reasons we will actually invert 2, i.e. most of the time work over Z[1/2].

We denote by Z[u] the cosimplicial commutative ring obtained by denormalization from the
free commutative algebra over one generator in homotopical degree 0 (endowed with the 0
differential and considered as a non-negatively graded commutative dg-algebra). In [MRT22],
it is proven that Spec∆(Z[u]) ≃ BS1

gr, the classifying stack of the graded circle, also called
the graded infinite projective space. We consider Z[u] as an object in csCRgr constant in the
simplicial direction where u is of weight 1. Similarly, we denote by Z[v] the free simplicial
commutative ring generated by one variable in homotopical degree 2. We consider Z[v] as an
object in csCRgr constant in the cosimplicial direction where v is of weight −1. Finally, we set

Z < u, v >:= Z[v]×Z Z[u] ∈ csCRgr,

which is a cosimplicial-simplicial commutative Z-graded ring.
For two commutative graded rings A and B, we define their convolution product A ⊙ B,

which is a new commutative graded ring with

(A⊙B)(n) = A(n) ⊗B(n)
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with the natural componentwise multiplication. This can be extended to a convolution product
for two objects in csCRgr by applying this construction levelwise, both in the simplicial and
cosimplicial directions.

Definition 5.1. The red shift endofunctor RS : csCRgr → csCRgr is defined by

RS(A) := A⊙ (Z < u, v >).

It is easy to see that Totπ(RS(A)) is a graded complex which is naturally quasi-isomorphic
to RS(Totπ(A)). Therefore, RS preserves weak equivalence in csCRgr, and thus induces a well
defined ∞-functor RS : csCRgr → csCRgr covering the red-shift self equivalence by the functor
Totπ

csCRgr RS //

Totπ

��

csCRgr

Totπ

��
dggr

k RS
// dggr

k .

We note however that RS does not induce a self equivalence of csCRgr, and for instance does not
preserve free objects, as opposed for instance to the corresponding situation with E∞-algebras.
In fact the behaviour of RS with respect to free objects is quite subtle, and the authors do not
claim to fully understand the situation.

Note also that RS(A) is only well behaved when A is only Z≥0-graded (or Z≤0-graded). For
instance, RS(Z[t, t−1]) is equivalent to Z < v, u >, for which u is the image of t and v the image
of t−1. However, by definition uv = 0, and thus the multiplicative structure on RS(Z[t, t−1]) is
somehow degenerate. Trying to use Z[u, u−1] is not a solution here, as the presence of divided
powers in the homotopy of commutative simplicial rings would force us to work over Q.

Using Proposition 4.1, we can then consider RS as an endofunctor of the ∞-category of graded
derived affine stacks RS : dChAff gr → dChAff gr. The convolution construction − ⊙ B for
B ∈ csCRgr is lax monoidal in the sense that there is a natural morphism (A⊙B)⊗(A′⊙B) →
(A ⊗ A′) ⊙ B. This lax monoidal structure is monoidal if and only if the multiplication maps
B(p) ⊗B(q) → B(p+q) are completed quasi-isomorphisms of cosimplicial-simplicial modules (i.e.
becomes quasi-isomorphismes ater applying Totπ). In the case B = Z < u, v > this is never
the case, as uv = 0. However, if A is Z≥0-graded, we have A ⊙ Z < u, v >≃ A ⊙ Z[u], and
clearly Z[u](p) ⊗ Z[v](q) → Z[u](p+q) is a completed quasi-isomorphism as its image by Totπ is
equivalent to the canonical isomorphism Z[−2p]⊗ Z[−2q] ≃ Z[−2p− 2q].

Lemma 5.2. Let X and Y be two graded derived affine stacks which are both Z≥0-graded.
Then, the natural morphism RS(X × Y ) → RS(X)× RS(Y ) is an equivalence.

Another special case where RS preserves products is given in the following Lemma. It follows
from the easy observation that the image by Totπ of the multiplication Z[v](−1) ⊗ Z[v](−1) →
Z[v](−2) is equivalent to the multiplication by 2 (because Z[v] has divided powers)

×2 : Z[2]⊗ Z[2] ≃ Z[4] → Z[4].
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Lemma 5.3. Let X and Y be two graded derived affine stacks whose weights are concentrated
in [−1, 0]. Then, the natural morphism RS(X × Y ) → RS(X)× RS(Y ) is an equivalence when
restricted to SpecZ[1/2].

Remind from [MRT22, Toë20] the group object BKer = S1
gr ∈ dChAff gr. As a graded

derived affine stack its weights are concentrated in [−1, 0], so Lemma 5.3 applies, and we deduce
that that RS(BKer) is another group object in dChAff gr (at least over SpecZ[1/2]). As a
graded affine stack, it is clearly of the form Spec(Z[1/2][ϵ−1]) ≃ G0. As the group structure
on G0 is essentially unique (see [MRT22]), we moreover deduce that RS(BKer) ≃ G0 as group
objects in dChAff gr.

We have thus seen that the image of the group BKer by RS is the group G0. We believe
that the functor RS can also be promoted to a functor on the level of equivariant objects. This
is not a formal statement, as RS does not commute with finite products in general. The precise
construction is outside of scope of this note and we leave this as an open question for the future.

Question 5.4. Can the ∞-functor RS be extended to

RS : BKer − dChAff gr+ −→ G0 − dChAff gr+,

in such a way that the cofree object XBKer is sent to RS(X)G0 (at least over SpecZ[1/2]) ?

Remark 5.5. The above question is a coherence problem. It is indeed possible to prove easily
that for any X ∈ dChAff gr+, there exists a canonical morphism RS(XBKer) → RS(X)G0 of
graded derived affine stacks. Therefore, a BKer-action on X, induces a morphism X → XBKer,
and therefore, via RS, a morphism RS(X) → RS(XBker) → RS(X)G0 . The problem here is to
control the higher coherences in order to promote the previous morphism to an action of G0 on
RS(X).

5.2. Infinitesimal structures on derived foliations. We have now everything we need in
order to compare infinitesimal derived foliations and our original definition of derived foliations,
assuming that we have a positive answer to Question 5.4.

Let F → X be a derived foliation on a derived k-scheme X in the sense of [Toë20]. Remind
that it consists of a linear derived stack V(LF [1]), for LF a perfect complex on X, together
with an action of the graded group BKer. By applying the red-shift functor, we get a graded
derived affine stack RS(V(LF [1])) together with an action of G0. The complex of functions on
RS(V(LF [1])) is the graded complex RS(SymOX

(LF [1])) and thus receive a canonical morphism
LF [−1] → RS(SymOX

(LF [1])). By the universal property of the Sym construction, we thus
get a canonical morphism of graded stacks RS(V(LF [1])) → V(LF [−1])).

Definition 5.6. Let F be a derived foliation on X as above. An infinitesimal structure on F
consists of an extension of the G0-action along the morphism RS(V(LF [1])) → V(LF [−1])).

By definition, an infinitesimal structure on F determines an infinitesimal derived foliation
Fπ, given by the G0-action on V(LF [−1])). We can thus define the infinitesimal cohomology of
F by taking infinitesimal cohomology of Fπ in the sense of our Definition 3.1. Therefore, the
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first consequence of the data of an infinitesimal structure is the possibility to define infinitesimal
cohomology. Note that with the definition above, there is a canonical morphism

Ĉinf(Fπ,O) −→ ĈDR(F ,O)

from the infinitesimal cohomology of Fπ to the derived de Rham cohomology of F introduced in
[Toë20]. This is a generalization of the well known comparison morphism between infinitesimal
and crystalline cohomology. This can be enhanced to a pull-back functor, from QCoh(Fπ) to
QCoh(F). Moreover, the differential operators construction of [TV20] can also be performed
for F and Fπ. This provides two different sheaves of filtered dg-algebras on X, the crystalline
differential operators DF along F and the Grothendieck differential operators D∞

Fπ along Fπ.
These are two filtered dg-algebras, with a natural morphism DF −→ D∞

Fπ , whose induced
morphism on the associated graded objects is Sym(TF) −→ Sympd(TF), from the symmetric
algebra (in the sense of cosimplicial-simplicial models of our §1) to its PD-completion.

We also believe that it should be possible to prove that a derived foliation that admits
an infinitesimal structure is automatically formally integrable. In fact, it seems that when it
exists, Fπ completely recovers F as follows. The graded derived affine stack RS(V(LF [1])) can
be obtained as the PD completion of V(LF [−1])) along its zero section, and it is very reasonable
to expect that the RS construction induces an equivalence between graded derived affine stacks
and graded derived affine stacks with PD structures. In particular, the G0 = RS(BKer)-
action on RS(V(LF [1])) should comes from a unique BKer-action on V(LF [1]). What we
are describing here is probably the existence of a fogertful functor, from infinitesimal derived
foliations to derived foliations, even though we are not able, at the moment, to provide the
details of this construction. This forgetful functor seems very closely related to the forgetful
functor from partition Lie algebras to Lie algebras, and recent results of J. Fu ( [Fu]) indicate
that infinitesimal derived foliations could be essentially the same thing as (perfect) partition
Lie algebroids. The fact that partition Lie algebras are related to formal moduli problem then
explains the fact that infinitesimal derived foliations have nice formal integrability properties.
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